Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Basisvektoren

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 9 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Basisvektoren
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Basisvektoren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Basisvektoren kannst du es wiederholen und üben.
  • Beschreibe, was eine Basis ist, und gib die kanonische Basis des $\mathbb{R}^2$ sowie $\mathbb{R}^3$ an.

    Tipps

    Seien $\vec u$ und $\vec v$ Vektoren, dann ist

    $\vec w=r\cdot \vec u+s\cdot \vec v$

    eine Linearkombination dieser beiden Vektoren.

    Diese beiden Vektoren sind linear abhängig. Der Vektor

    $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$

    lässt sich nicht als Linearkombination dieser beiden Vektoren schreiben.

    Ein Vektor der Länge $1$ wird als Einheitsvektor bezeichnet.

    Lösung

    Was ist eine Basis

    Die Basis des $\mathbb{R}^2$ ($\mathbb{R}^3$) ist eine Menge bestehend aus zwei (drei) linear unabhängigen Vektoren.

    Diese Vektoren werden als Basisvektoren bezeichnet.

    Mithilfe der Basisvektoren kann jeder beliebige Vektor des $\mathbb{R}^2$ ($\mathbb{R}^3$) durch Addition und skalare Multiplikation eindeutig dargestellt werden.

    Das bedeutet, dass sich jeder beliebige Vektor des $\mathbb{R}^2$ ($\mathbb{R}^3$) als Linearkombination der Basisvektoren darstellen lässt.

  • Stelle den beliebigen Vektor $\vec x$ als Linearkombination der Vektoren $\vec u$ sowie $\vec v$ dar.

    Tipps

    Ein Linearkombination der beiden Vektoren $\vec u$ sowie $\vec v$ ist gegeben durch

    $\vec w=r\cdot \vec u+s\cdot \vec v$.

    Ziehe von der zweiten Gleichung in dem Gleichungssystem die erste ab.

    Zum Beispiel ist

    $\vec x=\begin{pmatrix} 3 \\ 2 \end{pmatrix}=(-1)\cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}+5\cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

    Lösung

    Wenn diese beiden Vektoren eine Basis des $\mathbb{R}^2$ sein sollen, dann muss sich jeder beliebige Vektor des $\mathbb{R}^2$ sich als Linearkombination dieser beiden Vektoren darstellen lassen. Das bedeutet

    $\vec x=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}=r\cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}+s\cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

    Dies führt zu dem Gleichungssystem

    1. $x_1=2r+s$
    2. $x_2=3r+s$
    Wenn man von der zweiten Gleichung die erste subtrahiert, erhält man

    $r=x_2-x_1$.

    Dieses $r$ wird in der ersten Gleichung eingesetzt:

    $x_1=2(x_2-x_1)+s=2x_2-2x_1+2$.

    Es werden $2x_2$ subtrahiert und $2x_1$ addiert zu

    $s=3x_1-2x_2$.

    Das bedeutet, dass für jeden beliebigen Vektor $\vec x$ Parameter $r=x_2-x_1$ sowie $s=3x_1-2x_2$ existieren, so dass $\vec x=r\cdot \vec u+s\cdot \vec v$.

    Das bedeutet, dass die beiden Vektoren $\vec u$ sowie $\vec v$ eine Basis des $\mathbb{R}^2$ ist.

  • Bestimme die Koordinaten des Vektors $\vec x$ bezüglich der gegebenen Basis.

    Tipps

    Stelle ein Gleichungssystem auf.

    Die erste Gleichung, entsprechend zur ersten Koordinate, lautet

    $8=2r+s+3t$.

    In den beiden anderen Gleichungen kommen jeweils nur zwei Unbekannte vor.

    Es ist $r+t=1$.

    Lösung

    Der Vektor $\vec x$ soll als Linearkombination dieser drei Basisvektoren dargestellt werden:

    $\vec x=\begin{pmatrix} 8 \\ 1 \\9 \end{pmatrix}=r\cdot \begin{pmatrix} 2 \\ 1 \\0 \end{pmatrix}+s\cdot \begin{pmatrix} 1 \\ 0 \\1 \end{pmatrix}+t\cdot \begin{pmatrix} 3 \\ 1 \\2 \end{pmatrix}$

    Dies führt zu einem Gleichungssystem:

    1. $8=2r+s+3t$
    2. $1=r+t$
    3. $9=s+2t$
    • Wenn man von der ersten Gleichung die dritte subtrahiert, kommt man zu $-1=2r+t$. Von dieser Gleichung kann man die zweite subtrahieren zu $-2=r$.
    • Nun wird dieses $r=-2$ in der zweiten Gleichung eingesetzt: $1=-2+t$ und $2$ addiert zu $t=3$.
    • Durch Einsetzen von $t=3$ in der dritten Gleichung erhält man $9=s+6$. Subtraktion von $6$ führt zu $s=3$.
    Also sind $r=-2$ sowie $s=t=3$ die gesuchten Koordinaten.

  • Prüfe, welche der Mengen eine Basis darstellt.

    Tipps

    Vektoren sind linear abhängig, wenn sich einer der Vektoren als Linearkombination der anderen darstellen lässt.

    Im $\mathbb{R}^2$ sind zwei Vektoren linear abhängig, wenn sich der eine Vektor als Vielfaches des anderen darstellen lässt. Dies wird auch als Kollinearität bezeichnet.

    Es sind insgesamt drei Mengen gegeben, die eine Basis darstellen.

    Lösung

    Jede Menge mit weniger Vektoren als der Dimension des Raumes kann keine Basis sein. Damit kann die Menge mit den zwei Vektoren des $\mathbb{R}^3$ keine Basis dieses Raumes sein.

    Es liegt auch keine Basis vor, wenn die Vektoren linear abhängig sind. Das bedeutet zum Beispiel bei drei Vektoren des $\mathbb{R}^3$, dass sich einer der drei Vektoren als Linearkombination der beiden anderen darstellen lässt.

    $\left\{\begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix};\begin{pmatrix} 0 \\ 1 \\0 \end{pmatrix};\begin{pmatrix} 1 \\ 1 \\0 \end{pmatrix}\right\}$

    Es ist

    $\begin{pmatrix} 1 \\ 1 \\0 \end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix}+\begin{pmatrix} 0 \\ 1 \\0 \end{pmatrix}$

    Also liegt hier keine Basis vor.

    Bei $\left\{\begin{pmatrix} 2 \\ 2 \\1 \end{pmatrix};\begin{pmatrix} 1 \\ 1 \\-1 \end{pmatrix};\begin{pmatrix} 1 \\ 1 \\0 \end{pmatrix}\right\}$

    gilt

    $\begin{pmatrix} 2 \\ 2 \\1 \end{pmatrix}+\begin{pmatrix} 1 \\ 1 \\-1 \end{pmatrix}=3\cdot \begin{pmatrix} 1 \\ 1 \\0 \end{pmatrix}$

    Auch diese Vektoren sind linear abhängig. Es liegt also keine Basis vor.

    Die verbleibende Menge an Vektoren des $\mathbb{R}^3$ ist eine Basis dieses Raumes.

    Im $\mathbb{R}^2$ kann man die lineare Abhängigkeit daran erkennen, dass einer der beiden Vektoren sich als Vielfaches des anderen schreiben lässt.

    Dies ist bei den beiden Mengen mit den Vektoren des $\mathbb{R}^2$ nicht der Fall. Beide Mengen sind Basen des $\mathbb{R}^2$.

  • Gib die Koordinaten des Vektors in Abhängigkeit der Basis an.

    Tipps

    Du musst $\vec x$ als Linearkombination der Basisvektoren schreiben:

    $\vec x=\begin{pmatrix} x_1 \\ x_2 \\x_3 \end{pmatrix}=r\cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix}+s\cdot \begin{pmatrix} 0 \\ 1 \\0 \end{pmatrix}+t\cdot \begin{pmatrix} 0 \\ 0 \\1 \end{pmatrix}$

    Schreibe $\vec x$ wie folgt

    $\vec x=\begin{pmatrix} x_1 \\ x_2 \\x_3 \end{pmatrix}=\begin{pmatrix} x_1 \\ 0 \\0 \end{pmatrix}+\begin{pmatrix} 0 \\ x_2 \\0 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\x_3 \end{pmatrix}$

    Beachte, dass

    $\begin{pmatrix} x_1 \\ 0 \\0 \end{pmatrix}=x_1\cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix}$

    ist.

    Lösung

    Es ist

    $\vec x=\begin{pmatrix} x_1 \\ x_2 \\x_3 \end{pmatrix}=\begin{pmatrix} x_1 \\ 0 \\0 \end{pmatrix}+\begin{pmatrix} 0 \\ x_2 \\0 \end{pmatrix}+\begin{pmatrix} 0 \\ 0 \\x_3 \end{pmatrix}$

    und somit

    $\vec x=\begin{pmatrix} x_1 \\ x_2 \\x_3 \end{pmatrix}=x_1\cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix}+x_2\cdot\begin{pmatrix} 0 \\ 1 \\0 \end{pmatrix}+x_3\cdot\begin{pmatrix} 0 \\ 0 \\1 \end{pmatrix}$

    Das bedeutet, dass $x_1$, $x_2$ und $x_3$ die Koordinaten dieses Vektors bezüglich der kanonischen Basis sind.

  • Stelle die Vektoren $\vec x$, $\vec y$ sowie $\vec z$ als Linearkombinationen der entsprechenden Basisvektoren dar.

    Tipps
    • Achte auch auf das Vorzeichen. Wenn die entsprechende Koordinate negativ ist, musst du das Vorzeichen auch eintragen.
    • Schreibe auch, sofern nötig, die Koordinate $1$ als Faktor auf.

    Alle Koordinaten sind ganzzahlig.

    Stelle jeweils ein Gleichungssystem auf und löse dies.

    Lösung

    $\vec x=\begin{pmatrix} 7 \\ 3 \end{pmatrix}=r\cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix}+s\cdot\begin{pmatrix} -1 \\ 3\end{pmatrix}$

    führt zu dem Gleichungssystem

    1. $7=r-s$ sowie
    2. $3=3r+3s$ oder $1=r+s$
    Durch Addition erhält man $8=2r$. Nun wird durch $2$ dividiert zu $r=4$. Dieses $r=4$ wird in $1=r+s$ eingesetzt, also $1=4+s$. Subtraktion von $4$ führt zu $s=-3$.

    Bei den beiden verbleibenden Beispielen muss man nicht das gesamte Gleichungssystem aufschreiben:

    $\vec y=\begin{pmatrix} 7 \\ -10 \end{pmatrix}=r\cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}+s\cdot \begin{pmatrix} 0 \\ 1\end{pmatrix}$

    Die erste Zeile führt zu $r=7$. Dies kann in der zweiten Zeile eingesetzt: $-10=2\cdot 7+s$. Nun wird auf beiden Seiten $14$ subtrahiert zu $s=-14$.

    $\vec z=\begin{pmatrix} 4 \\ 4\\1 \end{pmatrix}=r\cdot \begin{pmatrix} 1 \\ 0\\0 \end{pmatrix}+s\cdot \begin{pmatrix} 0 \\ 1\\0\end{pmatrix}+t\cdot \begin{pmatrix} 1 \\ 1\\1\end{pmatrix}$

    • In der letzten Zeile steht bereits $t=1$.
    • Durch Einsetzen in der zweiten Zeile erhält man $4=s+1$ und äquivalent dazu $s=3$.
    • Ebenso kann $t=1$ in der ersten Zeile eingesetzt werden $4=r+1$. Somit ist auch $r=3$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.264

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.466

Lernvideos

35.632

Übungen

33.169

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden