- Physik
- Elektrizität und Magnetismus
- Elektrik
- Wirkungen des elektrischen Stroms
Wirkungen des elektrischen Stroms
Erfahre mehr über die vier Wirkungen des elektrischen Stroms: die Wärmewirkung, Lichtwirkung, magnetische Wirkung und chemische Wirkung. Entdecke, wie Strom zum Beispiel Wärme im Wasserkocher erzeugt, Licht in LED-Lampen abstrahlt und chemische Prozesse im Smartphone antreibt. Interessiert? Das und vieles mehr findest du im folgenden Text!
- Wirkungen des elektrischen Stroms – einfach erklärt
- Wirkungen des elektrischen Stroms – die Wärmewirkung
- Wirkungen des elektrischen Stroms – die Lichtwirkung
- Wirkungen des elektrischen Stroms – die magnetische Wirkung
- Wirkungen des elektrischen Stroms – die chemische Wirkung
- Zusammenfassung der vier Wirkungen des elektrischen Stroms
- Häufig gestellte Fragen zum Thema Wirkungen des elektrischen Stroms
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Elektrischer Strom Wirkung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Wirkungen des elektrischen Stroms
Wirkungen des elektrischen Stroms – einfach erklärt
Beim elektrischen Strom unterschieden wir vier verschiedenen Wirkungen:
Die Wirkungen des elektrischen Stroms sind: die Wärmewirkung, die Lichtwirkung, die magnetische Wirkung und die chemische Wirkung.
Wenn du dich in deinem Zuhause umschaust, kannst du sicher viele Geräte entdecken, die mit Strom funktionieren. Wir schauen uns heute kurz an, auf welche Weise Strom wirken kann.
Wirkungen des elektrischen Stroms – die Wärmewirkung
Das erste Beispiel ist der Wasserkocher. Im Wasserkocher befindet sich eine Heizwendel. Das ist ein Draht aus einem bestimmten Material, das einen hohen elektrischen Widerstand hat. Nun fließt Strom durch die Wendel. Das kannst du dir so vorstellen: Der elektrische Strom besteht aus kleinen Teilchen, den Ladungsträgern, die sich in eine Richtung bewegen. Die Voraussetzung für den Stromfluss ist die Spannung, die hier die Steckdose zur Verfügung stellt.
Wenn die Ladungsträger durch den Heizdraht fließen, stoßen sie dort mit anderen Teilchen zusammen. Durch Reibung entsteht Wärme, die sich auf das Wasser überträgt und es zum Kochen bringt. Das ist die Wärmewirkung des elektrischen Stroms.
Wirkungen des elektrischen Stroms – die Lichtwirkung
Die Lichtwirkung kannst du zum Beispiel bei LED-Lampen beobachten. Auch in diesem Fall fließt der Strom, also die geladenen Teilchen, durch das Bauteil. Bei einer LED-Lampe sind das die sogenannten Leuchtdioden. Die geladenen Teilchen des Stroms geben Energie an diese Bauteile ab, die dann in Licht umgewandelt wird. Das ist die Lichtwirkung des elektrischen Stroms.
Wirkungen des elektrischen Stroms – die magnetische Wirkung
Schauen wir uns die Lautsprecher an. Ein Lautsprecher besteht in der Regel aus einem Magneten und einer Spule, die an der Membran befestigt ist. Wenn Strom durch die Spule fließt, wird sie zu einem Elektromagneten, dessen Polung von der Stromrichtung abhängt. Das ist die magnetische Wirkung des elektrischen Stroms. Je nach Richtung des Stroms wird die Spule vom Magneten abgestoßen oder angezogen. So wird die Membran in periodische Schwingungen versetzt und erzeugt einen Ton.
Wirkungen des elektrischen Stroms – die chemische Wirkung
Zu guter Letzt werfen wir einen Blick auf das Smartphone. Wenn du es an die Steckdose anschließt, wird der Akku aufgeladen. Beim Aufladen wird durch die Energie des Stroms ein chemischer Prozess angetrieben. Das ist die chemische Wirkung des elektrischen Stroms. Wenn du das Smartphone benutzt, wird diese chemische Energie wieder in elektrischen Strom umgewandelt.
Zusammenfassung der vier Wirkungen des elektrischen Stroms
- Durch die Wärmewirkung des elektrischen Stroms kann aus elektrischer Energie Wärme erzeugt werden.
- Durch die Lichtwirkung kann über Stromfluss Licht ausgesendet werden.
- Durch die magnetische Wirkung kann über einen stromdurchflossenen Leiter eine magnetische Kraft wirken.
- Durch die chemische Wirkung kann elektrische Energie umgewandelt und in Form von chemischer Energie gespeichert werden.
Häufig gestellte Fragen zum Thema Wirkungen des elektrischen Stroms
Die vier Wirkungen des elektrischen Stroms sind die Wärmewirkung, die Lichtwirkung, die magnetische Wirkung und die chemische Wirkung.
Um einen stromdurchflossenen Draht herum entsteht ein magnetisches Feld und auf einen stromdurchflossenen Draht wirkt in einem Magnetfeld wirkt eine Kraft, die senkrecht zum Magnetfeld und zur Richtung des Stromflusses steht. Daraus ergeben sich vielfältige magnetische Wirkungsmöglichkeiten, zum Beispiel die Bewegung einer Membran in einem Lautsprecher, aber auch die vielfältige Nutzung von Elektromagneten, die nach Belieben an- und ausgeschalten werden können.
Auch wenn man sie aus Gründen des Energiesparens heute nicht mehr verwenden sollte, besonders deutlich wird die Lichtwirkung an der altmodischen Glühlampe: Die elektrischen Ladungen des Stroms stoßen mit den Atomen des Glühdrahts zusammen und übertragen an diese Energie. Diese Energie wird dann zum Teil in Form von Licht wieder abgeben.
Das beste Beispiel für die chemische Wirkung ist das Aufladen des Akkus im Smartphone oder anderen elektrischen Geräten. Dabei wird die elektrische Energie des Stroms in Form von chemischer Energie gespeichert, die dann über chemische Reaktionen im Inneren des Akkus wieder freigesetzt werden kann.
Aufgrund der Zusammenstöße mit den elektrischen Ladungen, die den Stromfluss ausmachen, können die Atome eines Leiters in starke Schwingungen versetzt werden. Da die Temperatur nichts anderes als ein Maß für die Stärke der Teilchenbewegung ist, äußert sich dies in der Wärmewirkung – die Teilchenbewegung wird stärker und damit steigt die Temperatur.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenTranskript Wirkungen des elektrischen Stroms
"Elektrischer Strom" – für uns heutzutage unverzichtbar! Du wachst morgens auf und das Erste was du wahrnimmst, ist meist NICHT Vogelgezwitscher und Sonnenstrahlen, sondern das Fiepen und Leuchten deines Weckers oder Handys . Aber "schlechte Laune am Morgen" ist nicht die einzige "Wirkung", die elektrische Geräte haben können. Was es für physikalische "Wirkungen des elektrischen Stroms" gibt, beleuchten wir in diesem Video. Das ist dir bestimmt schon aufgefallen: Elektrische Geräte sind ÜBERALL! Und obwohl sie alle den "gleichen" Strom aus der Steckdose zapfen, können sie ganz verschiedene Dinge anstellen. Hast du dich erstmal mühsam vom Bett zum Frühstückstisch geschleppt, kannst du die WÄRMEWIRKUNG des Stroms genießen. Sie sorgt dafür, dass ihr zu Hause heißes Wasser für Tee, Kaffee oder auch zum Eierkochen benutzen könnt. Denn in Wasserkochern, Kaffeemaschinen und Eierkochern stecken "Heizspiralen". Das sind im Prinzip nichts anderes als dicke Drähte, die sich durch den Strom, der hindurchfließt, stark aufheizen. Das passiert, weil die elektrisch geladenen Teilchen, die den Strom ausmachen, in Bewegung sind, und sowohl untereinander als auch mit den festsitzenden Atomen im Draht wechselwirken. Dadurch entsteht WÄRME, die an die Umgebung der Heizspirale abgegeben wird – ziemlich praktisch! Wenn du dann ins Bad stapfst, um zu kontrollieren, ob du noch genauso hübsch bist wie am Tag zuvor, brauchst du die LICHTWIRKUNG des Stroms. Auch DIE funktioniert dadurch, dass elektrisch geladene Teilchen wechselwirken und Energie abgeben. Allerdings eben bei bestimmten Materialien nicht nur in Form von Wärme, sondern auch in Form von LICHT. Schon ein einfaches Stück Draht fängt an zu GLÜHEN, wenn ein starker Strom hindurchfließt. Aber bei Energiesparlampen und LED's, die mit anderen Stoffen arbeiten, ist das Ganze noch effektiver – phänomenal! Jetzt bist du fit für den Weg zur Schule. Vielleicht hörst du dabei Musik, und nutzt so auch die MAGNETISCHE Wirkung des Stroms. Jeder "stromdurchflossene Draht" erzeugt nämlich immer auch ein schwaches Magnetfeld. Das wird in Lautsprechern wie auch in Kopfhörern sehr effektiv genutzt, um über die erzeugte magnetische Wirkung eine "Membran" in Schwingung zu versetzen, und SO den elektrischen Strom in hörbare Signale, also Schall, zu übersetzen. Bei Mikrofonen läuft dieser Vorgang übrigens genau umgekehrt. Die "magnetische Wirkung", über die der Strom also letztendlich zu Bewegung führt, funktioniert aber nicht nur mit Membranen, sondern wird auch in allen kleinen und großen "Elektromotoren" genutzt. Auch das ist nützlich für deinen Schulweg, denn so können allerhand Verkehrsmittel betrieben werden. Und wo wir bei Verkehrsmitteln sind: Vielleicht hast du schonmal was von der "Brennstoffzelle" gehört. Das ist eine sehr umweltfreundliche Art von Motor, die mit "Wasserstoff", also einem Bestandteil von Wasser, betrieben wird. Damit das funktioniert, muss aber zuerst Wasser AUFGESPALTEN, also in seine Bestandteile "Wasserstoff" und "Sauerstoff" zerlegt werden. Das ist ein CHEMISCHER Prozess, der "Elektrolyse" genannt wird. Und DER funktioniert – du ahnst es vielleicht schon – mit elektrischem Strom. Wenn Strom in dieser oder ähnlicher Weise genutzt wird, um eine chemische Reaktion herbeizuführen, wie hier die "Elektrolyse des Wassers", spricht man von der CHEMISCHEN Wirkung des Stroms. Ähnlich wie die magnetische Wirkung kann auch die "chemische Wirkung" umgekehrt werden. Das wird zum Beispiel in Handyakkus genutzt, die ja ELEKTRISCH aufgeladen werden, den Strom dann CHEMISCH speichern, und schließlich wieder ans Handy abgeben. Bei DER Vielseitigkeit kriegt man doch gleich bessere Laune! Fassen wir die vier Wirkungen des elektrischen Stroms nochmal zusammen: Es gibt die "Wärmewirkung" des Stroms; diese wird in "Heizspiralen" von Wasserkochern und Ähnlichem genutzt. Es gibt die "Lichtwirkung", die in allen Arten von Lampen und Lichterscheinungen auftritt. Dann die "magnetische Wirkung", die über geschickte Anordnungen zu Bewegung und sogar zu Schall führen kann. Und die "chemische Wirkung", die genutzt wird, um chemische Reaktionen wie die "Elektrolyse des Wassers" herbeizuführen, oder das Laden eines Akkus zu ermöglichen. So kannst du dich den ganzen Tag über an den verschiedensten Wirkungen des elektrischen Stroms erfreuen. Schön wär's aber, wenn das ganze Geblinke, Gebimmel und Gesurre auch mal ein Ende hätte.
Wirkungen des elektrischen Stroms Übung
-
Gib Beispiele für die vier Wirkungen des elektrischen Stroms an.
TippsDie magnetische Wirkung kann zu Schall führen.
In elektrischen Geräten, die die Wärmewirkung des elektrischen Stroms nutzen, sind Heizspiralen verbaut.
Heizspiralen sind dicke Drähte, die sich aufgrund des hindurchfließenden Stroms sehr stark erwärmen, also aufheizen.LösungElektrischer Strom ist in unserem täglichen Leben unverzichtbar. Wir können seine Wirkung in vier Bereiche unterteilen:
Die Wärmewirkung
In elektrischen Geräten, die die Wärmewirkung des elektrischen Stroms nutzen, sind Heizspiralen verbaut. Heizspiralen sind dicke Drähte, die sich aufgrund des hindurchfließenden Stroms sehr stark erwärmen, also aufheizen. Das liegt daran, dass die elektrisch geladenen Teilchen, die den Strom ausmachen, in Bewegung sind und sowohl untereinander als auch mit den festsitzenden Atomen im Draht wechselwirken. Dadurch entsteht Wärme, welche an die Umgebung der Heizspirale abgegeben wird.
Beispiele hierfür sind:- Wasserkocher
- Eierkocher
Die Lichtwirkung
Auch die Lichtwirkung entsteht dadurch, dass elektrisch geladene Teilchen wechselwirken und Energie abgeben. In diesem Fall geben sie die Energie jedoch in Form von Licht ab. Dafür werden spezielle Materialien verwendet.
Beispiele hierfür sind:- LED
- Energiesparlampe
Die magnetische Wirkung
Jeder stromdurchflossene Draht erzeugt ein (schwaches) Magnetfeld. Durch die so erzeugte magnetische Wirkung kann beispielsweise eine Membran in Schwingung versetzt werden, welche dann Schall erzeugt.
Beispiele hierfür sind:- Lautsprecher
Die chemische Wirkung
Bei der sogenannten Elektrolyse wird mithilfe von elektrischem Strom Wasser aufgespalten in Wasserstoff und Sauerstoff. Dieser Vorgang kann auch umgekehrt genutzt werden, indem chemisch gespeicherter Strom bei Bedarf wieder abgegeben wird.
Ein Beispiel hierfür ist:- Handyakku
-
Fasse die vier Wirkungen des elektrischen Stroms zusammen.
TippsHier wird die Wärmewirkung in einer Heizspirale veranschaulicht.
Beispiele für die magnetische Wirkung des elektrischen Stroms sind Lautsprecher und Kopfhörer: Es wird durch die erzeugte magnetische Wirkung eine Membran in Schwingung versetzt.
LösungElektrische Geräte vereinfachen unser Leben. Sie nutzen dabei den elektrischen Strom, indem elektrische Energie in andere Energieformen umgewandelt wird. Die dadurch entstehende Wirkung des elektrischen Stroms können wir physikalisch in vier Bereiche unterteilen:
- die Wärmewirkung:
- die Lichtwirkung:
- die magnetische Wirkung:
- die chemische Wirkung:
-
Beschreibe, wie bei einem Föhn die Wirkung des elektrischen Stroms ausgenutzt wird.
TippsElektrischer Strom wird unter anderem in einigen Geräten verwendet, um Hitze bzw. Wärme zu erzeugen. Wir sprechen dann von der Wärmewirkung des elektrischen Stroms.
Fließt ein elektrischer Strom, so heißt das, dass sich elektrisch geladene Teilchen im Leiter bewegen.
LösungElektrischer Strom wird unter anderem in einigen Geräten verwendet, um Hitze bzw. Wärme zu erzeugen. Wir sprechen dann von der Wärmewirkung des elektrischen Stroms.
Ein Föhn ist ein Beispiel für ein Gerät, bei dem die Wärmewirkung des elektrischen Stroms genutzt wird.
Im Inneren des Föhns befindet sich ein Heizdraht. Wird er vom elektrischen Strom durchflossen, erwärmt er sich. Das liegt daran, dass die elektrisch geladenen Teilchen, die den Strom ausmachen, in Bewegung sind und sowohl untereinander als auch mit den festsitzenden Atomen im Draht wechselwirken. Dadurch entsteht Wärme, welche an die Umgebung des Heizdrahtes abgegeben wird. Außer dem Heizdraht besitzt ein Föhn ein Gebläse. Es pustet Umgebungsluft an dem Heizdraht vorbei. Die Luft erwärmt sich dabei und kann dann zum Trocknen der Haare verwendet werden.Physikalisch betrachtet wandelt der Föhn somit elektrische Energie in Wärmeenergie um.
-
Erkläre die Funktionsweise der Klingelschaltung.
TippsWir unterscheiden vier verschiedene Wirkungen des elektrischen Stroms:
- Wärmewirkung
- Lichtwirkung
- magnetische Wirkung
- chemische Wirkung
Jeder stromdurchflossene Draht erzeugt ein (schwaches) Magnetfeld.
Es ist nur eine Aussage richtig.
LösungWir unterscheiden vier verschiedene Wirkungen des elektrischen Stroms:
- Wärmewirkung
- Lichtwirkung
- magnetische Wirkung
- chemische Wirkung
Für eine elektrische Klingel nutzen wir die magnetische Wirkung des elektrischen Stroms aus.
$\implies$ Die Aussage „Die Klingelschaltung nutzt die chemische Wirkung des elektrischen Stroms“ ist somit falsch.
Wir betrachten im Folgenden genauer, wie die Schaltung aufgebaut ist und wie die magnetische Wirkung bei der Klingelschaltung genutzt wird:
Die Klingelschaltung beinhaltet eine Spannungsquelle, einen Schalter, eine Spule, ein Metallelement über der Spule, welches mit dem Klöppel verbunden ist, und die Glocke. Wird der Schalter geschlossen, ist der Stromkreis geschlossen und es fließt ein elektrischer Strom durch die Spule. Wir wissen: Jeder stromdurchflossene Draht erzeugt ein (schwaches) Magnetfeld.
$\implies$ Die Aussage „Fließt Strom durch die Kupferspule, wird diese zum Magneten.“ ist somit richtig.
Der so angeschaltete Magnet zieht das Metallelement über der Spule an. Es bewegt sich auf die Spule zu. Der Klöppel bewegt sich somit in Richtung Glocke.
$\implies$ „Bei geschlossenem Stromkreis wird der Klöppel von der runden Glocke angezogen“ ist falsch.
Denn nicht die Glocke zieht den Klöppel an, sondern die Spule das Metallelement. Die Bewegung des Klöppels ist nur eine Folge von dieser Anziehung. Da sich der Klöppel zur Glocke bewegt, ertönt die Glocke, sobald der Klöppel gegen sie stößt. Allerdings ertönt die Glocke im geschlossenen Stromkreis bei dieser Klingelanlange nur einmal: Solange der Stromkreis geschlossen ist, ruht der Klöppel an der Glocke und schlägt nicht weiter gegen sie.
$\implies$ Die Aussage „Solange der Stromkreis geschlossen ist, ertönt die Klingel.“ ist somit falsch.
-
Beschreibe die Anwendung der magnetischen Wirkung des Stroms beim Elektromotor.
TippsJeder stromdurchflossene Draht erzeugt ein (schwaches) Magnetfeld.
Zuletzt resultiert der elektrische Strom in einer Bewegung.
LösungDie magnetische Wirkung des elektrischen Stroms:
Jeder stromdurchflossene Draht erzeugt ein (schwaches) Magnetfeld.
Die magnetische Wirkung des elektrischen Stroms kann dann in einem Elektromotor genutzt werden. Dieser erzeugt eine Bewegung. Wir kennen diese Nutzung des elektrischen Stroms beispielsweise bei E-Scootern. Hierbei wird also elektrische Energie in mechanische Bewegungsenergie umgewandelt.Die Umwandlung erfolgt somit zusammengefasst wie folgt:
Elektrischer Strom fließt durch den Leiter.
$\implies \quad$ Ein Magnetfeld um den Leiter wird erzeugt.
$\implies \quad$ Der Elektromotor wird betrieben.
$\implies \quad$ Eine Bewegung wird ausgelöst.
-
Beschreibe, wie Wasserstoff als Zwischenspeicher für die von Solarzellen erzeugte elektrische Energie verwendet werden kann.
TippsBeginne mit der Solarzelle.
Um eine Brennstoffzelle zu betreiben, wird Wasserstoff benötigt.
Als letzter Schritt soll der elektrische Strom wieder verfügbar sein.
LösungDurch Solarzellen wird Lichtenergie in elektrische Energie, also elektrischen Strom, umgewandelt. Häufig wird die so gewonnene Energie aber nicht direkt gebraucht. Es wird daher ein Zwischenspeicher benötigt.
Dazu wird die elektrische Energie der Solarzellen für die Elektrolyse von Wasser verwendet.
Dabei entsteht Wasserstoff. Dieser kann gespeichert und auch transportiert werden.
Später kann der Wasserstoff zur gewünschten Zeit wiederum eine Brennstoffzelle betreiben.
Hier läuft der Prozess der Elektrolyse umgekehrt ab: Bei der Reaktion des Wasserstoffs mit dem Sauerstoff wird erneut Energie frei.Diese erzeugt dann wieder elektrischen Strom, der somit bequem zur gewünschten Zeit und am gewünschten Ort zur Verfügung gestellt werden kann.
Wirkungen des elektrischen Stroms
Gefahren des elektrischen Stroms
Elektrische Leiter und Nichtleiter
Größen und Begriffe der Elektrizitätslehre
Was ist elektrischer Strom?
Was ist elektrische Spannung?
Elektrizität und elektrische Energie
Die elektrische Leistung
Wie funktioniert eine Batterie?
Ohmsches Gesetz – elektrischer Widerstand
Spannung und Stromstärke messen
Widerstandsgesetz
Ohm'sches Gesetz
Elektrische Arbeit und Leistung – Überblick
Thomas Edison
Edison und das Licht – es war einmal Forscher und Erfinder (Folge 18)
8.761
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.361
Lernvideos
35.193
Übungen
32.813
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt
Gutes Video , dass kann man wirklich mit anders sagen und die Qualität ist wirklich akzeptabel und die Quantität mit der wir Medien nutzen ist schon wirklich verblüffend
Gut erklärt
das video ist echt cool danke: )
Es ist aber ein bisschen schwierig zu verstehen.......
Aber bei der Physikarbeit wird es mir bestimmt helfen
nice