Kräfte im Magnetfeld

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Kräfte im Magnetfeld
Das magnetische Feld
Magnete spielen eine große Rolle in vielen Bereichen. Sie sind Bestandteil von Generatoren und Elektromotoren, Lautsprechern und Mikrofonen, hängen vielleicht an deinem Kühlschrank und sind auch für viele wissenschaftliche Experimente essenziell.
All diese Magnete erzeugen ein Magnetfeld. Was so ein magnetisches Feld in der Physik ist, wollen wir uns im Folgenden etwas genauer anschauen.
Magnetisches Feld – Definition
Bevor wir uns damit beschäftigen, wie das Magnetfeld definiert ist, müssen wir uns ein paar Begriffe in Erinnerung rufen. Zunächst erinnern wir uns, was ein Feld in der Physik ist. Als Feld bezeichnet man die räumliche Verteilung einer physikalischen Größe. Ein Beispiel dafür ist das elektrische Potenzial. Das Feld ordnet jedem Punkt im Raum eine Zahl zu, die die Stärke des Potenzials angibt. Ein Vektorfeld ist ein Feld, das jedem Punkt im Raum nicht nur eine Zahl, sondern einen Vektor zuordnet. Ein Vektor hat nicht nur einen Betrag, sondern auch eine Richtung. Ein Beispiel dafür ist das elektrische Feld.
Mit diesem Wissen können wir uns der Definition des magnetischen Feldes zuwenden:
Als Magnetfeld bezeichnet man in der Physik ein Vektorfeld, das die Wirkung magnetischer Kräfte auf Probekörper beschreibt. Ein Magnetfeld kann durch magnetische Stoffe, elektrischen Strom und sich zeitlich ändernde elektrische Felder verursacht werden.
Analog zum elektrischen Feld kann man mithilfe von Feldlinien ein magnetisches Feld darstellen. Betrachten wir als Beispiel das Magnetfeld eines Stabmagneten:
Die Feldlinien laufen vom Nord- zum Südpol des Magneten. Sie veranschaulichen damit die Richtung des magnetischen Flusses. Die Dichte der Feldlinien, die besagt, wie eng die Feldlinien nebeneinander sind, stellt die Stärke des Magnetfeldes an diesem Ort dar. Das Magnetfeld wird umso schwächer, je weiter man sich vom Magneten entfernt. Darin ähneln sich elektrisches und magnetisches Feld. Es gibt allerdings auch einen wichtigen Unterschied zwischen elektrischen und magnetischen Feldern. Im Magnetfeld sind die Feldlinien geschlossen. Sie verlassen den Magneten am Nordpol und treten am Südpol wieder ein und beschreiben so geschlossene Bahnen ohne Anfang und Ende. Das liegt daran, dass es keine magnetischen Monopole gibt. Nord- und Südpol eines Magneten sind also nicht vergleichbar mit Plus- und Minuspol der Elektrostatik – wenn man einen Magneten in der Mitte durchschneidet, erhält man zwei kleinere, schwächere Magnete, die für sich wieder Nord- und Südpol haben.
Das magnetische Feld wirkt auf andere Magneten und auf bewegte Ladungen oder stromdurchflossene Leiter. Die Feldlinien sind dabei ein Modell zur Veranschaulichung – sie existieren also nicht wirklich als Linien. Die Wirkung kann man aber, zum Beispiel durch Eisenspäne, sichtbar machen.
Die magnetische Feldstärke
Die Stärke des magnetischen Feldes wird durch seine Feldstärke $\vec{H}$ beschrieben. Auch die Feldstärke ist ein Vektorfeld. Sie gibt die Stärke und Richtung des Magnetfeldes an jedem Punkt in der Einheit
$[H] = \frac{\text{A}}{\text{m}}$
Als Beispiel wollen wir uns das Feld und die Feldstärke für einen elektrischen, stromdurchflossenen Leiter anschauen.
Jeder stromdurchflossene Leiter erzeugt ein Magnetfeld. Bei einem geraden Leiter kann man die Richtung der Magnetfeldlinien mit der Korkenzieherregel der rechten Hand anschaulich nachvollziehen. Dabei wird die Hand so gehalten, dass der ausgestreckte Daumen in die technische Stromrichtung zeigt. Die technische Stromrichtung zeigt vom Plus- zum Minuspol. Die Finger bilden eine leicht geöffnete Faust. Sie zeigen dann genau in die Richtung der Magnetfeldlinien – diese bilden konzentrische, geschlossene Kreise um den Leiter. Die Magnetfeldstärke $H$ ist auf einem geschlossenen Kreis überall gleich groß, nimmt aber mit wachsendem Abstand $r$ zum Leiter ab. Die Magnetfeldstärke hängt außerdem von der Stromstärke $I$ ab, die durch den Leiter fließt. Insgesamt ergibt sich die folgende Formel:
$H = \frac{I}{2 \pi r}$
Dabei ist $I$ die Stromstärke und $r$ der Abstand zum Leiter.

Kräfte im Magnetfeld

Magnetfeld eines geraden, stromdurchflossenen Drahtes

Magnetfeld von Spulen

Aufgaben zum Magnetfeld in einer langen Spule

Magnetfeld einer langgestreckten, stromdurchflossenen Spule

Magnetische Permeabilität µ

Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld

Lorentzkraft – Bewegte Ladung und Ströme im magnetischen Feld

Aufgaben zur magnetischen Feldstärke und Lorentzkraft

Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich

Energie einer stromdurchflossenen Spule

Energiedichte von Feldern

Bestimmung der spezifische Ladung am Fadenstrahlrohr

Felder im Vergleich

Elektromagnete – Entdeckung und Entwicklung
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Transistor
- Drehmoment
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Hookesches Gesetz und Federkraft
- elektrische Stromstärke
- elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, UV-Strahlung, Infrarot UV Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Trigonometrische Funktionen
- Lichtjahr
- SI-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, akustischer Dopplereffekt
- Kernspaltung