Energieumwandlung und Energieerhaltung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Energieumwandlung und Energieerhaltung
Energieumwandlung und Energieerhaltung in der Physik
Hast du schon einmal davon gehört, dass Energie weder erzeugt noch vernichtet werden kann? Dann hast du dich bestimmt gefragt, wie das sein kann – denn aus der Steckdose in deinem Zimmer kommt schließlich Strom, also ein Energieträger, der in einem Kraftwerk erzeugt wurde. Tatsächlich werden in einem Kraftwerk allerdings nur verschiedene Energieformen ineinander umgewandelt. Die Energiemenge bleibt dabei gleich. Dieses Phänomen nennt man die Energieerhaltung.
Was ist die Energieerhaltung? – Definition
Die Energieerhaltung, oder der Energieerhaltungssatz, besagt, dass Energie lediglich zwischen verschiedenen Energieformen umgewandelt, aber nicht erzeugt oder vernichtet werden kann.
Energieformen
Weißt du, was passiert, wenn du eine Glühlampe einschaltest? Oder wie man mithilfe von Benzin ein Auto fahren kann? Und weißt du, was die Energie damit zu tun hat?
Der Zusammenhang besteht in der Energieumwandlung. Sowohl im Auto als auch in der Glühlampe wird eine Energieform in eine andere umgewandelt. Was das genau bedeutet, damit beschäftigen wir uns im Folgenden.
Zuerst wiederholen wir die verschiedenen Energieformen. Erinnere dich daran, welche verschiedenen Energieformen du bereits kennst.
Die potenzielle Energie, auch Lageenergie genannt, gibt die Energie eines Körpers an, die durch seine Lage bestimmt wird. Ein Ball, welcher auf einem Tisch liegt, oder eine gespannte Feder haben potenzielle Energie.
Kinetische Energie wird auch Bewegungsenergie genannt und gibt die in der Bewegung gespeicherte Energie an. Jeder Körper, der sich bewegt, hat kinetische Energie. Ein Auto, welches über die Autobahn fährt, besitzt zum Beispiel kinetische Energie.
Die thermische Energie wird auch als Wärmeenergie bezeichnet. Die thermische Energie des Wassers in einer Wärmflasche wird an dich und dein Bett abgegeben.
Damit du dir dieses Video gerade anschauen und den Text lesen kannst, wird elektrische Energie für deinen Computer oder dein Tablet benötigt.
Chemische Energie ist in Stoffen gespeichert und wird unter anderem durch Verbrennung freigesetzt. Beispiele dafür sind Erdöl und Holz. Wenn du sie verbrennst, kannst du die Energie nutzen.
Auch Licht ist eine Form von Energie, die sogenannte Strahlungsenergie. Durch die Strahlungsenergie der Sonne ist Leben auf der Erde möglich.
Was ist ein Energiewandler?
Aber was passiert, wenn du eine Glühlampe einschaltest? Sie beginnt zu leuchten. Hierbei wird Energie umgewandelt. Das nennt man auch Energieumwandlung. Eine kurze Definition für die Energieumwandlung ist die folgende: Energie wird von einer Energieform in eine andere Energieform umgewandelt. Diese Energieumwandlung kann mithilfe von Energieflussdiagrammen dargestellt werden.
Schauen wir uns die Energieumwandlung am Beispiel der Glühlampe an. Eine Glühlampe wird mit elektrischer Energie versorgt, das ist also die Energieform 1. Die Glühlampe agiert als Energiewandler. Heraus kommt Licht, also Strahlungsenergie. In der Grafik dargestellt als Energieform 2. Allerdings wird nicht die komplette Energie in Strahlungsenergie umgewandelt. Eine Glühlampe erwärmt sich, wenn sie eine Weile brennt. Es entsteht auch Wärmeenergie, die dritte Energieform. Diese ist im Fall der Glühbirne ungewollt und kann nicht weiter genutzt werden – man spricht daher umgangssprachlich auch von einem Verlust. Eine Umwandlung von Energien ist immer mit Verlusten verbunden.
Bei einem Verbrennungsmotor in einem Auto findet ebenfalls Energieumwandlung statt. Hierbei wird die chemische Energie des Kraftstoffs, also Benzin oder Diesel, beim Verbrennen im Motor in kinetische Energie umgewandelt. So kann der Motor das Auto in Bewegung bringen. Auch hier entsteht thermische Energie und der Motor erhitzt sich während des Fahrens.
Die Glühlampe und der Motor sind verantwortlich für diese Energieumwandlung. Man bezeichnet sie daher als Energiewandler.
Energiewandler – Definition
Energiewandler sind Geräte, Gegenstände oder Lebewesen, die verschiedene Energieformen ineinander umwandeln. Welche Energieform in welche umgewandelt wird, hängt vom jeweiligen Energiewandler ab.
Energiewandler – Beispiele
- Das Glühwürmchen wandelt die chemische Energie der Nahrung in kinetische Energie und Strahlungsenergie um.
- Eine Solarzelle wandelt die Strahlungsenergie der Sonne in elektrische Energie um.
- Der Mensch als Energiewandler wandelt die chemische Energie der Nahrung unter anderem in kinetische Energie und Wärmeenergie um.
Betrachten wir nun ein Motorrad mit einem Benzinmotor. Im Benzin ist chemische Energie gespeichert. Im Motor wird diese Energie durch eine Verbrennungsreaktion in Bewegungsenergie umgewandelt. Allerdings werden nicht $100~\%$ der chemischen Energie in Bewegungsenergie umgewandelt – ein Teil wird in Schallenergie umgewandelt und ein weiterer, sogar der größte Teil, wird in Wärmeenergie umgewandelt. Umgangssprachlich spricht man von Energieverlust, denn diese Energie geht dem eigentlichen Nutzen, den man erzielen will, verloren. Aber aus physikalischer Sicht wird sie lediglich umgewandelt.
Das Verhältnis aus insgesamt eingesetzter Energie und nutzbarer Energie (hier also der Bewegungsenergie) heißt Wirkungsgrad:
$\text{Wirkungsgrad} = \frac{\text{nutzbare Energie}}{\text{insgesamt eingesetzte Energie}}$
Für Verbrennungsmotoren liegt der Wirkungsgrad bei um die $20~\%$. Nach den Gesetzen der Thermodynamik ist ein Wirkungsgrad von $100~\%$ nicht möglich.
Auch wenn das Motorrad anhält, geht die Bewegungsenergie nicht verloren, sondern wird wieder in andere Energieformen umgewandelt, hauptsächlich durch Reibung in Wärmeenergie. Das wird besonders deutlich, wenn ein Motorrad sehr stark bremst: Dann kann es sogar passieren, dass die Reifen so heiß werden, dass es qualmt.
Der „Wert“ der Energie
Es gibt sehr viele verschiedene Arten von Energiewandlern, aber nicht jede Energieform kann in jede beliebige umgewandelt werden. Hast du dir schon einmal die Frage gestellt, warum Energie überhaupt umgewandelt werden muss? Jede Energieform hat einen anderen Nutzen für uns. Wenn uns kalt ist, dann bringt uns potenzielle Energie wenig, aber thermische Energie sorgt dafür, dass unsere Körpertemperatur wieder steigt. Das beste Beispiel ist aber die elektrische Energie. Die elektrische Energie selbst können wir kaum nutzen. Sie ist aber praktisch, weil sie sich in so viele andere Energieformen umwandeln lässt.
Bestimmt hast du schon einmal von Energieerzeugung und Energieverlust gehört. Physikalisch gesehen ist aber beides falsch. Energie kann weder erzeugt werden noch kann sie verloren gehen. Energie kann lediglich umgewandelt werden. Die Summe aller Energieformen bleibt immer gleich. Das nennt man die Energieerhaltung.
Nicht jede Energieform hat den gleichen Wert für uns Menschen. Das liegt daran, dass sich nicht jede Energieform gleich gut nutzen bzw. umwandeln lässt. Elektrische, kinetische und potenzielle Energie lassen sich sehr gut umwandeln und dadurch gut nutzen. Daher haben diese Energieformen einen höheren Wert für uns. Thermische Energie hat den geringsten Wert. Diese kann nur umgewandelt werden, wenn sie von einem Körper mit hoher Temperatur, zum Beispiel dem Wasser in deiner Wärmflasche, zu einem Körper mit einer geringen Temperatur, zum Beispiel deinen ausgekühlten Füßen, fließt. Selbst dann jedoch nur unvollständig. Auch die thermische Energie, welche bei der Glühlampe oder dem Automotor entsteht, kann von uns nicht weiter genutzt werden. Man spricht dabei von Energieentwertung. Diese tritt bei allen Energieumwandlungen auf.
Der Wirkungsgrad
Um zu berechnen, wie groß der Anteil an nutzbaren und nicht nutzbaren Energieformen bei einer Energieumwandlung ist, gibt es den Wirkungsgrad. Dieser definiert sich durch das Verhältnis zwischen Nutzen und Aufwand.
$\text{Wirkungsgrad} = \frac{\text{Nutzen}}{\text{Aufwand}}$
Eine Glühlampe hat zum Beispiel einen Wirkungsgrad von $5\,\%$. Das bedeutet, dass aus $100\,\%$ zugeführter elektrischer Energie nur $5\,\%$ der Energie in Licht und die anderen $95\,\%$ in Wärme umgewandelt werden. Die Menge an zugeführter elektrischer Energie ist in diesem Beispiel der Aufwand und die erzeugte Strahlungsenergie der Nutzen. Eine Energiesparlampe hat einen etwas besseren Wirkungsgrad von etwa $25\,\%$, allerdings werden immer noch $75\,\%$ der Energie in Wärme umgewandelt.
Kraftwerke sind ebenfalls Energiewandler. Ihr Ziel ist es, andere Energieformen in elektrische Energie umzuwandeln. Ein normales Kohlekraftwerk hat einen Wirkungsgrad von $25\,\%$ – $50\,\%$. Also geht dabei von der eingesetzten chemischen Energie der Kohle $50\,\%$ – $75\,\%$ als Wärme verloren, der Rest wird in elektrische Energie umgewandelt. Die entstandene thermische Energie kann direkt an umliegende Häuser weitergeleitet werden und so ebenfalls nutzbar sein. Diese Wärme wird Fernwärme genannt. Damit lässt sich der Wirkungsgrad auf $80\,\%$ – $90\,\%$ erhöhen. Dabei werden jedoch eine Menge klimaschädliches $\mathrm{CO_2}$ und umwelt- bzw. gesundheitsschädlicher Feinstaub ausgestoßen, weshalb das Kohlekraftwerk trotz des guten Wirkungsgrads kein guter Energiewandler zur Gewinnung elektrischer Energie ist.
Zusammenfassung zu Energieumwandlung und Energieerhaltung
Wir haben uns angesehen, was Energieumwandlung und Energieerhaltung bedeutet. Jetzt weißt du, dass du eine Energieform mithilfe von Energiewandlern in eine andere umwandeln kannst. Dabei kann Energie weder erzeugt werden noch kann sie verloren gehen, da der Energieerhaltungssatz gilt. Auch haben wir geklärt, dass die unterschiedlichen Energieformen einen unterschiedlichen Wert für uns Menschen haben, da nicht alle beliebig nutzbar sind oder beliebig nutzbar gemacht werden können. Anhand von Beispielen haben wir erklärt, was der Wirkungsgrad ist. Der Wirkungsgrad gibt an, wie groß der Anteil an nutzbarer Energie bei einer Energieumwandlung ist.
Um dich noch mehr mit dem Thema vertraut zu machen, gibt es noch Übungen und ein Arbeitsblatt zum Thema Energiewandler. Hier findest du auch Aufgaben zur Energieerhaltung.
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Transistor
- Drehmoment
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Hookesches Gesetz und Federkraft
- elektrische Stromstärke
- elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, UV-Strahlung, Infrarot UV Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Trigonometrische Funktionen
- Lichtjahr
- SI-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, akustischer Dopplereffekt
- Kernspaltung