Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Oberfläche und Mantelfläche von Kegeln

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 38 Bewertungen
Die Autor*innen
Avatar
Jonathan Wolff
Oberfläche und Mantelfläche von Kegeln
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Oberfläche und Mantelfläche von Kegeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Oberfläche und Mantelfläche von Kegeln kannst du es wiederholen und üben.
  • Berechne die Oberfläche des Kegels, der einen Radius von 6 cm und eine Höhe von 8 cm besitzt.

    Tipps

    Der Satz des Pythagoras sagt aus, dass in einem rechtwinkligen Dreieck die Seite gegenüber dem rechten Winkel (hier c) zum Quadrat die Summe der beiden anderen Seiten zum Quadrat ist. In einer Formel ausgedrückt heißt dies: $c^2 = a^2 + b^2$

    Die Seite $c$ berechnet man, indem man die Wurzel zieht. Es folgt: $ c = \sqrt{a^2 + b^2}$

    Den Oberflächeninhalt eines Kegels berechnen wir mit der Formel $ A_O = \pi \cdot r ( r + s)$.

    Dabei ist $r$ der Radius des Kreises und $s$ die Länge der Mantellinie.

    Lösung

    Den Oberflächeninhalt eines Kegels berechnen wir mit der Formel $ A_O = \pi \cdot r \cdot ( r + s)$.

    Wir wissen, dass $r = 6~cm$ ist. Allerdings kennen wir die Länge der Mantellinie $s$ nicht. Allerdings kennen wir noch die Höhe $h$ des Kegels und können mit dem Radius und der Höhe die Mantellinie berechnen. Die Formel zur Berechnung der Mantellinie lautet $ s^2 = r^2 + h^2$.

    Wenn wir diese Formel nach $s$ umstellen, erhalten wir $s =\sqrt{r^2 + h^2}$

    Nun setzen wir unsere Werte für $r$ und $h$ ein und erhalten

    $s = \sqrt{6~cm^2 + 8~cm^2} = \sqrt{36~cm + 64~cm} = \sqrt{100~cm} = 10~cm$.

    Wir wissen also, dass die Mantellinie $ s= 10~cm$ lang ist.

    Diesen Wert können wir nun in die Formel zur Berechnung des Oberflächeninhalts einsetzen und erhalten

    $A_O = \pi \cdot 6~cm \cdot( 6~cm + 10~cm) = \pi \cdot 6~cm \cdot 16~cm \approx 301,6~cm$.

  • Leite die Formel zur Berechnung der Oberfläche eines Kegels her.

    Tipps

    Bei diesem Term wurde das $x$ und $y$ ausgeklammert.

    Beim ersten Bruch kann man die $3$ das $z$ kürzen.

    Lösung
    1. Die Grundfläche und Mantelfläche eines Kegels ergeben zusammen die Oberfläche des Kegels. Wir müssen den Flächeninhalt der Grundfläche und Mantelfläche einzeln berechnen und addieren. In einer Formel ausgedrückt sieht dies so aus: $A_O = A_G + A_M$
    2. Die Grundfläche des Kegels hat die Form von einem Kreis. Den Flächeninhalt von einem Kreis bestimmt man mit der Formel $ A_G = \pi \cdot r^2$.
    3. Die Mantelfläche $A_M$ hat die Form eines Kreissektors. Um seine Fläche zu berechnen, nutzen wir die Formel: $ A = \frac{\alpha}{360^\circ} \cdot \pi \cdot s^2$. Der Winkel ist hierbei meist unbekannt und lässt sich bei dem Körper schwer messen.
    4. Daher wird eine Verhältnisgleichung aufgestellt, sodass $\alpha$ nicht mehr in der Gleichung auftaucht. Das Verhältnis von $\alpha$ zu $360^\circ$, ist wie das Verhältnis der Bogenlänge des Kreissektors zu dem Umfang des Vollkreises mit dem Radius $s$. Die Länge des Kreisbogens entspricht dabei dem Umfang der Grundfläche. Die entsprechende Formel dazu lautet: $\frac{\alpha}{360°} = \frac{2 \cdot \pi \cdot r}{2 \cdot \pi \cdot s}$. Wenn man nun die $2$ und das $\pi$ kürzt, folgt daraus: $\frac{\alpha}{360°} = \frac {r}{s}$.
    5. Setzen wir dies nun in $ A = \frac{\alpha}{360°} \cdot \pi \cdot s^2$ ein, erhalten wir $ A = \frac{r}{s} \cdot \pi \cdot s^2$. Wenn man nun das $s$ im Nenner mit einem $s$ von $s^2$ kürzt, erhält man $ A = r \cdot \pi \cdot s$. Sortiert man diese Formel noch ein bisschen um, ergibt sich $A_M = \pi \cdot r \cdot s$.
    6. Da sich die Oberfläche des Kegels aus der Grundfläche und Mantelfläche zusammensetzt, kann man die entsprechenden Terme in die Formel $ A_O = A_G + A_M$ einsetzen. Daraus folgt $ A_O = \pi \cdot r^2 + \pi \cdot r \cdot s$.
    7. Klammert man das $\pi$ und $r$ aus der Formel $ A_O = π \cdot r^2 + π \cdot r \cdot s$ heraus, erhält man $ A_O = \pi \cdot r \cdot ( r + s)$.
  • Bestimme die Höhe oder den Radius des Kegels.

    Tipps

    Es gilt der Satz des Pythagoras: $c^2 = a^2 + b^2$

    Wenn ich die Länge der Seite $a$ berechnen will, stelle ich die Gleichung nach $a$ um, also:

    $\begin{align} c^2 &= a^2 + b^2 &|& - b^2 \\ a^2 &= c^2 - b^2 &|& \sqrt{~} \\ a &= \sqrt{c^2 - b^2} \end{align}$

    Verwende die Formel für die Mantellinie $s^2=r^2+h^2$ und den eben genannten Satz des Pythagoras.

    Lösung

    Nach dem Satz des Pythagoras gilt in einem rechtwinkligen Dreieck mit den Katheten $r$ und $h$ und der Hypothenuse $s$ die Formel :

    $ s^2 = r^2 + h^2$

    Wenn wir nun $r$ berechnen, können wir die Formel nach $r$ umstellen.

    $\begin{align} s^2 &= r^2 + h^2 &|& -h^2 \\ r^2 &= s^2 - h^2 &|& \sqrt{~} \\ r &= \sqrt{ s^2 -h ^2} \end{align}$

    Wollen wir $h$ berechnen, stellen wir die Formel ähnlich um. Es gilt:

    $r = \sqrt{ s^2 -r ^2}$

    Nutzen wir diese beiden Formeln nun um $r$ und $h$ zu errechnen, ergibt sich daraus:

    1. $ h = \sqrt{ 8^2~cm - 2 ^2~cm} = \sqrt{ 64~cm - 4~cm} = \sqrt{ 60~cm} \approx 7,75~cm$
    2. $ r = \sqrt{ 12^2~cm - 3^2~cm} = \sqrt{ 144~cm -94~cm} = \sqrt{ 135~cm} \approx 11,62~cm$
    3. $ h = \sqrt{ 9^2~cm - 5 ^2~cm} = \sqrt{ 81~cm - 25~cm} = \sqrt{ 56~cm} \approx 7,48~cm$
    4. $ r = \sqrt{ 14^2~cm - 6^2~cm} = \sqrt{ 196~cm - 36~cm} = \sqrt{ 160~cm} \approx 12,65~cm$
  • Berechne den Oberflächeninhalt des Kegels.

    Tipps

    Die Zahlen sind alle ganzzahlig. Verwende π mit dem vorgegebenem Taschenrechner.

    Um die Mantellinie zu berechnen, nutzen wir die Formel $s = \sqrt{r^2 + h^2}$

    Um den Oberflächeninhalt eines Kegels zu berechnen, nutzen wir die Formel $A_O = \pi \cdot r \cdot( r + s)$.

    Lösung

    Den Oberflächeninhalt eines Kegels berechnet man mit der Formel $A_O = \pi \cdot r \cdot ( r + s)$.

    Da wir $s$ noch nicht kennen, können wir $s$ mit dem Satz des Pythagoras berechnen. Mit dem Satz des Pythagoras gilt $s^2 = r^2 + h^2$. Durch das Ziehen der Wurzel erhalten wir die Größe für $s$: $ s = \sqrt{r^2 + h^2}$. Wir setzen die bekannten Größen ein und rechnen.

    $\begin{align} s& = \sqrt{(3~cm)^2 + (4~cm)^2} \\ &= \sqrt{9~cm^2 + 16~cm^2} \\ &= \sqrt{25~cm^2} \\ &= 5~cm \end{align}$

    Nun haben wir alle Werte die wir brauchen, um den Oberflächeninhalt zu berechnen.

    $\begin{align} A_O &= \pi \cdot r \cdot ( r + s) \\ & = \pi \cdot 3~cm \cdot ( 3~cm + 5~cm) \\ & = \pi \cdot 3~cm \cdot 8~cm \\ & = \pi \cdot 24~cm^2 \\ & \approx 75,39~cm^2 \end{align}$

    Der Oberflächeninhalt des Kegels beträgt genau $\pi \cdot 24~cm^2$ und ungefähr $75,39~cm^2$.

  • Fasse die Formeln zur Berechnung des Oberflächeninhalts eines Kegels zusammen.

    Tipps

    Hier siehst du ein mögliches Netz eines Kegels. Es zeigt, dass ein Kegel aus einer Grundfläche und einer Mantelfläche besteht.

    Den Flächeninhalt der Grundfläche berechnet man mit der Formel $A_G = \pi \cdot r^2$.

    Den Flächeninhalt der Mantelfläche berechnet man mit der Formel $A_M = \pi \cdot r \cdot s$.

    Lösung

    Die Grundfläche und Mantelfläche ergeben zusammen die Oberfläche eines Kegels. Dabei hat die Grundfläche die Form eines Kreises, während die Mantelfläche die Form eines Kreissektors hat. Die Formel zur Berechnung des Oberflächeninhalts lautet:

    $A_O = \pi \cdot r^2 + \pi \cdot r \cdot s$

    Da man das $\pi$ und $r$ ausklammern kann, kann man die Formel auch so schreiben:

    $A_O = \pi \cdot r \cdot ( r + s)$

  • Bestimme die Oberflächeninhalte der Kegel.

    Tipps

    Es gilt der Satz des Pythagoras: $c^2 = a^2 + b^2$

    Wenn ich die Länge der Seite $a$ berechnen will, stelle ich die Gleichung nach $a$ um, also:

    $\begin{align} c^2 &= a^2 + b^2 && | - b^2 \\ a^2 &= c^2 - b^2 && | \sqrt{~} \\ a &= \sqrt{c^2 - b^2} \end{align}$

    Wenn eine Schokoladentafel $12~cm$ lang ist und du möchtest nur $\frac{1}{3}$ der Schokolade haben, rechnest du$ \frac{1}{3} \cdot 12~cm = \frac{12}{3} = 4~cm$. Du weißt also, dass du nur $4~cm$ Schokolade nehmen möchtest.

    Der Oberflächeninhalt eines Kegels berechnet sich aus der Formel $A_O = \pi \cdot r (r +s)$. Berechne jeweils nur den Vorfaktor von $\pi$.

    Lösung

    Die Formel zur Berechnung des Oberflächeninhalts eines Kegels lautet $A_O = \pi \cdot r \cdot (r +s)$. Es genügt hierbei, die Vorfaktoren von $\pi$ zu berechnen.

    Wir sortieren die Kegel nach ihrem Oberflächeninhalt und beginnen mit dem Kleinsten.

    1. $r = 5~cm$, $ s=10~cm$: Setzen wir diese Werte in die Formel ein, erhalten wir $A_O = \pi \cdot 5~cm (5~cm + 10~cm) = \pi \cdot 75~ cm^2$.

    2. $ s=24~cm$, $r$ ist $\frac{1}{6}$ von $s$: Hier müssen wir zunächst berechnen, wie groß $r$ ist. Wir rechnen $r = \frac{1}{6} \cdot 24~cm = \frac{24~cm}{6} = 4~cm$. Nun wissen wir, dass $r = 4~cm$. Wir setzen dies wieder in unsere Formel ein und erhalten:

    $A_O = \pi \cdot 4~cm (4~cm + 24~cm) = \pi \cdot 112~cm^2$

    3. $h = 20~cm$, $r$ ist nur halb so lang wie $h$: Hier müssen wir zunächst $r$ und dann $s$ ausrechnen. Da $r$ nur die Hälfte von $20cm$ ist, muss $ r= 10~cm$ gelten.

    Weiter können wir $s$ mit dem Satz des Pythagoras berechnen. Bezogen auf unseren Kegel lautet die Formel zum Satz des Pythagoras $s^2 = r^2 + h^2$. Da wir nur $s$ berechnen wollen, müssen wir die Wurzel ziehen. Es gilt $ s = \sqrt{r^2 +h^2}$. Nun können wir $r$ und $h$ in die Formel für den Satz des Pythagoras einsetzen. Es folgt:

    $ s = \sqrt{10^2~cm +20^2~cm} = \sqrt{100~cm + 400~cm} = \sqrt{500~cm} \approx 22,36~cm$.

    Wir setzen diese Werte wieder in unsere Formel ein und erhalten:

    $A_O =\approx \pi \cdot 10~cm (10~cm + 22,36~cm) \approx \pi \cdot 323,6~cm^2$

    4. $s = 15~cm$, $h=7~cm$: Hier müssen wir wieder $r$ berechnen, was wir mit dem Satz des Pythagoras tun können. Die Formel dazu lautet wie bei (3) $s^2 = r^2 + h^2$. Da wir nun $r$ berechnen wollen, müssen wir die Formel nach $r$ umstellen. Es gilt:

    $\begin{align} s^2 & = r^2 + h^2 &&| - h^2 \\ r^2 & = s^2 - h^2 &&| \sqrt{~} \\ r & = \sqrt{s^2 - h^2} \\ r & = \sqrt{15^2cm - 7^2~cm} \\ r & = \sqrt{225~cm - 49~cm} \\ r & = \sqrt{176~cm} \\ r & \approx 13,27~cm \end{align}$

    Wir setzen dies wieder in unsere Formel ein und erhalten:

    $A_O = \pi \cdot 13,27~cm (13,27~cm + 15~cm) \approx \pi \cdot 424,05~cm^2$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.155

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.454

Lernvideos

35.612

Übungen

33.157

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden