Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kreisgleichungen mit drei Punkten bestimmen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 6 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Kreisgleichungen mit drei Punkten bestimmen
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Kreisgleichungen mit drei Punkten bestimmen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kreisgleichungen mit drei Punkten bestimmen kannst du es wiederholen und üben.
  • Berechne den Kreismittelpunkt.

    Tipps

    Den Mittelpunkt einer Strecke erhältst du, indem du die Koordinaten der Punkte addierst und die jeweilige Summe durch $2$ dividierst.

    Wenn du zu einem Vektor einen senkrechten Vektor suchst, vertausche die Koordinaten und ändere bei einer der Koordinaten das Vorzeichen.

    Das kannst du hier allgemein erkennen.

    Setze die beiden Geradengleichungen gleich. Du erhältst ein Gleichungssystem mit zwei Gleichungen und zwei Unbekannten, den Parametern $s$ und $t$.

    Löse dieses Gleichungssystem und setze den gefundenen Parameter in die entsprechende Gleichung ein.

    Es ist egal, welchen der beiden Parameter du wählst. Du erhältst natürlich immer den gleichen Schnittpunkt.

    Lösung

    Es genügt, zwei Mittelsenkrechten zu betrachten.

    Hierfür werden die entsprechenden Geraden aufgestellt, auf welchen sich die Mittelsenkrechten befinden. Dann werden die Geraden gleichgesetzt. Das so erhaltene Gleichungssystem muss dann gelöst werden.

    Berechnen wir nun die Mittelsenkrechte zu $\overline{AB}$.

    Der Mittelpunkt der Strecke ist $M_{AB}\left(\frac{2+4}2\bigg\vert\frac{3+1}2\right)=M_{AB}(3|2)$. Der Verbindungsvektor von $A$ und $B$ ist

    $\vec{AB}=\vec b-\vec a=\begin{pmatrix} 4-2\\ 1-3 \end{pmatrix}=\begin{pmatrix} 2\\ -2 \end{pmatrix}$

    Der Richtungsvektor der Geraden steht senkrecht zu diesem Vektor. Es werden die Koordinaten und dann bei einer Koordinate das Vorzeichen vertauscht. Zuletzt wird der Vektor noch vereinfacht, indem jede Koordinate durch $2$ dividiert wird.

    $\begin{pmatrix} 1\\ 1 \end{pmatrix}$

    Dann kann die Geradengleichung angegeben werden:

    $g:\vec x=\begin{pmatrix} 3\\ 2 \end{pmatrix}+s\begin{pmatrix} 1\\ 1 \end{pmatrix}$

    Die Mittelsenkrechte zu $\overline{AC}$ berechnen wir analog. Die Geradengleichung lautet:

    $h:\vec x=\begin{pmatrix} 3,5\\ 4 \end{pmatrix}+s\begin{pmatrix} 2\\ 3 \end{pmatrix}$

    Dann müssen wir die beiden Geradengleichungen gleichsetzen. Dies führt zu einem Gleichungssystem:

    $\begin{array}{rlcl} (I)&3+s&=&3,5+2t\\ (II)&2+s&=&4-3t \end{array}$

    Wenn man von der Gleichung (II) die Gleichung (I) abzieht, fällt $s$ heraus: $-1=0,5-5t$. Nun wird $0,5$ auf beiden Seiten subtrahiert $-1,5=-5t$. Zuletzt wird durch $-5$ dividiert zu $t=0,3$. Wenn man dieses $t$ in eine der beiden Gleichungen einsetzt, erhält man $s$:

    $3+s=3.5+0,6$.

    Subtraktion von $3$ führt zu $s=1,1$.

    Es ist nun egal, ob der Parameter $t$ in $g$ oder $s$ in $h$ eingesetzt wird. Der Schnittpunkt ist natürlich immer der gleiche.

    $\begin{pmatrix} 3\\ 2 \end{pmatrix}+1,1\begin{pmatrix} 1\\ 1 \end{pmatrix}=\begin{pmatrix} 4,1\\ 3,1 \end{pmatrix}$

    Der Mittelpunkt ist also $M(4,1|3,1)$.

    Wenn man diesen Mittelpunkt sowie einen der anderen drei Punkte in die Koordinatengleichung des Kreises einsetzt, erhält man den Radius (zum Quadrat):

    $k:(2-4,1)^2+(3-3,1)^2=(-2,1)^2+(-0,1)^2=4,42$.

    Durch Wurzelziehen erhält man den Radius $r\approx 2,1$ [LE].

  • Gib den Kreismittelpunkt sowie den Radius des Kreises an.

    Tipps

    Setze jeden der drei Punkte in die Koordinatengleichung ein. So erhältst du drei Gleichungen mit drei Unbekannten $m_1$, $m_2$ und $r$.

    Wenn du von der zweiten und der dritten Gleichung jeweils die erste subtrahierst, fallen sowohl $r^2$ als auch die quadratischen Terme $m_1^2$ und $m_2^2$ heraus.

    Wenn du den gefunden Mittelpunkt sowie einen der drei Punkte in die Koordinatengleichung des Kreises einsetzt, erhältst du den Radius.

    Lösung

    Der Mittelpunkt des Kreises, auf dessen Rand diese drei Punkte liegen, sowie dessen Radius können auch durch ein Gleichungssystem bestimmt werden.

    Es wird die Koordinatengleichung eines Kreises betrachtet:

    $k:(x-m_1)^2+(y-m_2)^2=r^2$.

    Dabei sind $x$ und $y$ die Koordinaten eines beliebigen Kreispunktes. $m_1$ ist die x-Koordinate und $m_2$ die y-Koordinate des Kreismittelpunktes; $r$ ist der Radius des Kreises.

    Es sind die drei Größen $m_1$, $m_2$ und $r$ unbekannt. Auf der anderen Seite sind drei Punkte des Kreisrandes bekannt. Zu jedem dieser Punkte wird mithilfe der Koordinatengleichung eine Gleichung aufgestellt.

    • $A(2|3)$ führt zu $(2-m_1)^2+(3-m_2)^2=r^2$. Mithilfe der 2. binomischen Formel erhält man $4-4m_1+m_1^2+9-6m_2+m_2^2=r^2~\Leftrightarrow~m_1^2-4m_1+m_2^2-6m_2+13=r^2$
    Ebenso können zu den anderen beiden Punkten die Gleichungen aufgestellt werden:

    • zu $B(4|1)$ gehört die Gleichung $m_1^2-8m_1+m_2^2-2m_2+17=r^2$ und
    • zu $C(5|5)$ die Gleichung $m_1^2-10m_1+m_2^2-10m_2+50=r^2$
    Zuerst wird von der dritten Gleichung die erste und dann von der zweiten Gleichung die erste abgezogen. Es ergibt sich ein neues Gleichungssystem:

    • $-6m_1-4m_2+37=0$
    • $-4m_1+4m_2+4=0$
    Wenn man diese beiden Gleichungen addiert, erhält man $-10m_1+41=0$. Addition von $10m_1$ und anschließende Division durch $10$ führt zu $m_1=4,1$. Nun kann dieses $m_1$ in eine der Gleichungen eingesetzt werden:

    $-4\cdot 4,1+4m_2+4=0$

    Nun wird $12,4$ addiert und dann durch $4$ dividiert. Dies führt zu $m_2=3,1$. Der Mittelpunkt ist somit $M(4,1|3,1)$.

    Zuletzt wird noch der Radius berechnet. Wenn man den Mittelpunkt und einen der drei Punkte in die Koordinatengleichung des Kreises einsetzt, erhält man den Radius:

    $k:(2-4,1)^2+(3-3,1)^2=(-2,1)^2+(-0,1)^2=4,42$.

    Durch Ziehen der Wurzel erhält man den Radius $r\approx 2,1$ [LE].

  • Berechne jeweils die fehlende Größe.

    Tipps

    Der Radius ist der Abstand eines beliebigen Randpunktes des Kreises zu dem Mittelpunkt.

    Verwende die Koordinatengleichung. Setze die bekannten Größen ein und forme die Gleichung nach der unbekannten Größe um.

    Alle Ergebnisse sind ganzzahlig.

    Für die y-Koordinate von $B$ sind zwei Werte möglich.

    Lösung

    In diese Koordinatengleichung werden jeweils die bekannten Größen eingesetzt. Schauen wir uns dies einmal genauer an:

    • Es seien $A(3|4)$ ein Punkt auf dem Kreisrand und $M(8|-8)$ der Mittelpunkt des Kreises. Dies führt zu $(3-8)^2+(4-(-8))^2=5^2+12^2=25+144=169=r^2$. Nun wird die Wurzel gezogen und man erhält $r=13$ [LE].
    • Es seien $B(4|y)$ ein Punkt auf dem Kreisrand sowie $M(10|10)$ der Kreismittelpunkt. Der Radius ist $r=10$. Die zugehörige Gleichung lautet $(4-10)^2+(y-10)^2=10^2$. Durch Subtraktion von $6^2=36$ erhält man $(y-10)^2=64=8^2$. Nun wird die Wurzel gezogen und es gibt zwei Lösungen: $y-10=\pm8$. Addition von $10$ führt zu $y_1=18$ oder $y_2=2$.
    • Es seien $C(8|30)$ ein Punkt auf dem Kreisrand und $M(0|15)$ der Mittelpunkt des Kreises. Dies führt zu $(8-0)^2+(30-15)^2=8^2+15^2=64+225=289=r^2$. Nun wird die Wurzel gezogen und man erhält $r=17$ [LE].
  • Gib die Koordinatengleichung des Kreises an, der durch die Punkte $A(-2|4)$, $B(1|-3)$ und $C(5|7)$ verläuft.

    Tipps

    Für die jeweiligen Geradengleichungen benötigst du den Mittelpunkt der Strecke sowie einen Vektor, der auf dem Verbindungsvektor der beiden Endpunkte senkrecht steht.

    Den Mittelpunkt einer Strecke erhältst du, indem du die Koordinaten der Punkte addierst und die jeweilige Summe durch $2$ dividierst.

    Eine der beiden resultierenden Gleichungen lautet $-0,5+7r=3-5s$.

    Lösung

    Es wird zu jeweils zwei Punkten die Gleichung der Geraden aufgestellt, auf welcher die Mittelsenkrechte liegt. Die Mittelsenkrechte zu $\overline{AB}$ ermitteln wir so:

    Der Mittelpunkt der Strecke ist $M_{AB}(-0,5|0,5)$.

    Der Verbindungsvektor ist $\vec{AB}=\begin{pmatrix} 3\\ -7 \end{pmatrix}$.

    Ein dazu senkrechter Vektor ist $\begin{pmatrix} 7\\ 3 \end{pmatrix}$.

    Damit kann die Geradengleichung angegeben werden:

    $g:\vec x=\begin{pmatrix} -0,5\\ 0,5 \end{pmatrix}+r\begin{pmatrix} 7\\ 3 \end{pmatrix}$

    Ebenso kann die Geradengleichung zu der Mittelsenkrechten zu $\overline{BC}$ bestimmt werden:

    Zunächst wird der Mittelpunkt der Strecke bestimmt: $M_{BC}(3|2)$. Der Verbindungsvektor ist $\vec{BC}=\begin{pmatrix} 4\\ 10 \end{pmatrix}$.

    Dazu senkrecht ist der Vektor $\begin{pmatrix} -5\\ 2 \end{pmatrix}$.

    Zuletzt kann die Geradengleichung angegeben werden: $h:\vec x=\begin{pmatrix} 3\\ 2 \end{pmatrix}+s\begin{pmatrix} -5\\ 2 \end{pmatrix}$

    Gleichsetzen der beiden Geraden führt zu dem Gleichungssystem:

    $\begin{array}{rlcl} (I)&-0,5+7r&=&3-5s\\ (II)&0,5+3r&=&2+2s \end{array}$

    Das Zweifache der ersten Gleichung wird zu dem Fünffachen der zweiten Gleichung addiert: $1,5+29r=16$. Nun wird $1,5$ subtrahiert $29r=14,5$ und durch $29$ dividiert: $r=0,5$. Damit kann $s=0$ berechnet werden.

    Der gesuchte Mittelpunkt ist also $M(3|2)$.

    Wenn man diesen Mittelpunkt sowie irgendeinen der drei Punkte, die auf dem Kreis liegen, in die Koordinatengleichung des Kreises einsetzt, erhält man den Radius:

    $k:(-2-3)^2+(4-2)^2=(-5)^2+(2)^2=29$.

    Durch Ziehen der Wurzel erhält man den Radius $r=\sqrt{29}\approx 5,4$ [LE].

    Schließlich kann die Koordinatengleichung des Kreises angegeben werden:

    $k:(x-3)^2+(y-2)^2=29$

    oder als äquivalente Lösung

    $k: x^2-6x+y^2-4y+13=29$.

    Die beiden Quadrate wurden jeweils mit der 2. binomischen Formel ausmultipliziert.

    Wenn man noch $13$ subtrahiert, erhält man

    $k: x^2-6x+y^2-4y=16$.

  • Beschreibe die Bedeutung der einzelnen Terme in der Kreisgleichung.

    Tipps

    Jeder Punkt auf dem Rand eines Kreises hat zu dessen Mittelpunkt den gleichen Abstand. Dies ist der Radius des Kreises.

    Der Abstand zweier Punkte zueinander lässt sich wie folgt berechnen:

    • Du bildest koordinatenweise die Differenz der beiden Punkte,
    • dann quadrierst du die Differenzen.
    • Die Quadrate addierst du und
    • ziehst zuletzt die Wurzel aus der Summe.
    Lösung

    In dieser Gleichung sind $x$ und $y$ die x- beziehungsweise y-Koordinate eines beliebigen Randpunktes des Kreises.

    • $m_1$ ist die x- und
    • $m_2$ die y-Koordinate des Kreismittelpunktes.
    $r$ ist der Radius des Kreises.

    Diese Gleichung besagt, dass der quadrierte Abstand eines beliebigen Kreisrandpunktes zu dem Mittelpunkt (die linke Seite der Gleichung) gleich dem quadrierten Radius (die rechte Seite) ist.

    Wenn auf beiden Seiten die Wurzel gezogen wird, steht links der Abstand und rechts der Radius.

    Es wird üblicherweise mit dem quadrierten Abstand und dann auch dem quadrierten Radius gerechnet, da dadurch die Verwendung der Wurzel vermieden wird. Dies ändert die Rechnung nicht, da der Abstand immer positiv ist.

  • Leite aus der Koordinatengleichung $k: x^2+4x+y^2-8y=5$ den Mittelpunkt und den Radius des Kreises her.

    Tipps

    Verwende die Koordinatengleichung

    $k:(x-m_1)^2+(y-m_2)^2=r^2$

    und multipliziere diese aus.

    Ausmultipliziert ergibt sich:

    $k: x^2-2m_1x+y^2-2m_2y+m_1^2+m_2^2=r^2$.

    Ergänze die angegebenen Koordinatengleichung so, dass du die obige Form erhältst. Dabei kannst du die quadratische Ergänzung verwenden.

    Achte auf die Vorzeichen.

    Die x-Koordinate des Mittelpunktes ist negativ.

    Alle Werte sind ganzzahlig.

    Lösung

    Diese Koordinatengleichung wird so ergänzt, dass jeweils eine binomische Formel angewendet werden kann:

    $\begin{align} x^2+4x & = x^2+4x+4-4\\ & =(x+2)^2-4 \end{align}$

    sowie

    $\begin{align} y^2-8y & =y^2-8y+16-16\\ & =(y-4)^2-16 \end{align}$.

    Damit können wir den linken Teil der Gleichung bereits so formulieren:

    $x^2+4x+y^2-8y=(x+2)^2-4+(y-4)^2-16=(x+2)^2+(y-4)^2-20$

    Nun kann die gesamte Koordinatengleichung umgeschrieben werden zu

    $k:(x+2)^2+(y-4)^2-20=5$.

    Zuletzt addieren wir noch $20$:

    $k:(x+2)^2+(y-4)^2=25=5^2$.

    Nun können sowohl die Mittelpunktkoordinaten als auch der Radius abgelesen werden.

    • $M(-2|4)$ und
    • $r=5$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.155

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.454

Lernvideos

35.612

Übungen

33.157

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden