Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Eigenschaften von Carbonsäuren

Erfahre alles über Carbonsäuren, organische Verbindungen mit Carboxylgruppen. Sie lassen sich in aromatische, gesättigte und ungesättigte Formen einteilen, wie Benzoesäure oder Sorbinsäure. Lerne über ihre Siedepunkte, Acidität und pK$\ce{_S}$-Werte. Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.2 / 12 Bewertungen
Die Autor*innen
Avatar
André Otto
Eigenschaften von Carbonsäuren
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Eigenschaften von Carbonsäuren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Eigenschaften von Carbonsäuren kannst du es wiederholen und üben.
  • Nenne die physikalischen Eigenschaften von Carbonsäuren.

    Tipps

    Alkane sind wasserunlöslich!

    Je mehr Kräfte im Inneren eines Stoffes wirken, desto höher liegt der Siedepunkt.

    Lösung

    Die Carbonsäure-Gruppe $-COOH$ beeinflusst häufig maßgeblich die chemischen Eigenschaften von organischen Verbindungen, die diese funktionelle Gruppe enthalten. Dies hat vor allem zwei Gründe.
    Durch die gute Stabilisierung des Säurerest-Anions $R-COO^-$ handelt es sich bei Carbonsäuren um Verbindungen mit sauren Eigenschaften.
    Für die physikalischen Eigenschaften ist jedoch die Fähigkeit der Carbonsäure-Gruppe zur Bildung von Wasserstoffbrückenbindungen entscheidender. Wasserstoffbrückenbindungen können zwischen $-OH$-Gruppen und Atomen mit hoher Elektronegativität entstehen. Da in der Carbonsäure eine $-OH$-Gruppe und, mit dem doppelt gebundenen Sauerstoffatom, eine sehr elektronegative Gruppe enthalten ist, kann eine Carbonsäure-Gruppe gleich an zwei Wasserstoffbrückenbindungen beteiligt sein.
    Dies erhöht die Wasserlöslichkeit, ebenfalls die Siede- und Schmelzpunkte der Verbindungen. Bei Carbonsäuren mit großem unpolaren Molekülteil überwiegen jedoch die hydrophoben Eigenschaften.

  • Bestimme die $pK_S$-Werte der Carbonsäuren.

    Tipps

    Chlorid-Liganden am Alkan-Gerüst erhöhen die Acidität!

    Restgruppen, die nur aus Kohlenstoff und Wasserstoff bestehen, verringern die Acidität!

    Lösung

    Die Ameisensäure $H-COOH$ hat einen $pK_S$-Wert von 3,8. Tauscht man das Wasserstoffatom gegen andere organische Reste aus, verändert dies den $pK_S$-Wert. Wenn ein Alkylrest eingeführt wird, erhöht dies den $pK_S$-Wert. Das Beispiel ist die Propionsäure $C_2H_5-COOH$ mit einem $pK_S$-Wert von 4,9.
    Organische Reste, die Chlor oder weitere Carbonsäure-Gruppen enthalten, senken den $pK_S$-Wert. Der Wert für die Malonsäure $HOOC-CH_2-COOH$ liegt daher bei 2,8.
    Werden alle drei Wasserstoff-Atome der $-CH_3$-Gruppe der Essigsäure gegen Chlor-Atome ausgetauscht, sinkt der $pK_S$-Wert sogar auf 0,7.

  • Analysiere die Stärke des -I-Effektes unterschiedlicher Substituenten.

    Tipps

    Eine Methyl-Gruppe besitzt einen +I-Effekt. Es schiebt also Elektronen ins System hinein.

    Halogene haben einen starken -I-Effekt. Sie ziehen Elektronen aus dem System ab.

    Lösung

    Der induktive Effekt ergibt sich aus der Elektronegativität einer Gruppe. Eine hohe Elektronegativität bedeutet, dass die Gruppe Elektronen von benachbarten Molekülteilen anzieht. Dies erhöht die Acidität. Bei einer geringen Elektronegativität gibt eine Restgruppe leicht Elektronen an benachbarte Molekülteile ab. Dies verringert die Acidität.
    Alkylreste haben einen elektronenschiebenden Effekt, da sie eine geringe Elektronegativität aufweisen. Daher hat die $CH_3$-Gruppe den geringsten -I-Effekt.
    Die beiden Gruppen $-Cl$ und $-COOH$ haben beide einen elektronenanziehenden Effekt. Dieser ist bei der Chlorido-Gruppe geringfügig größer, daher ist der $pK_S$-Wert ein wenig geringer.
    Die Stärke des -I-Effektes des Wasserstoffs befindet sich zwischen der der $CH_3$-Gruppe und der der $COOH$-Gruppe.

  • Bestimme die Eigenschaften der Phthalsäure.

    Tipps

    Aromatische Verbindungen wie Benzol sind stark lipophil!

    Carboxyl-Gruppen sind befähigt, Wasserstoffbrückenbindungen auszubilden.

    Lösung

    Aromatische Carbonsäuren haben die Eigenschaften von Carbonsäuren mit denen von Aromaten vermischt. Aromaten sind unpolar, daher sind aromatische Verbindungen sehr schlecht in Wasser löslich. Carbonsäure-Gruppen erhöhen jedoch die Wasserlöslichkeit. Diese ist bei der Benzoesäure, die aufgebaut ist wie die Phthalsäure jedoch mit nur einer Carbonsäuregruppe, noch sehr gering. Durch die zweite Carbonsäuregruppe ist die Phthalsäure jedoch zumindest geringfügig in Wasser löslich, was für einfache aromatische Systeme eher ungewöhnlich ist.
    Auf Grund von lipophilen Wechselwirkungen haben Aromaten meist relativ hohe Schmelz- und Siedepunkte. Die beiden Carbonsäure-Gruppen verstärken dies noch, so dass die Phthalsäure einen hohen Schmelzpunkt hat. Der Siedepunkt ist so hoch, dass er unter Normaldruck nicht erreicht werden kann - die Verbindung zersetzt sich vorher bei 250°C.
    Die Eigenschaften als Säure hingegen werden maßgeblich durch die beiden, benachbart gelegenen Carbonsäure-Gruppen beeinflusst.

  • Schildere die Auswirkungen des -I-Effektes von Substituenten auf die Säurestärke von Carbonsäuren.

    Tipps

    Je stabiler ein Säurerest-Anion ist, desto höher ist die Säurestärke der Verbindung!

    Je geringer der $pK_S$-Wert ist, desto höher ist die Säurestärke.

    Lösung

    Die Elektronegativität der Atome beeinflusst die Verteilung der Elektronen im Molekül. Atome oder Gruppen mit hoher Elektronegativität ziehen Elektronen sehr stark an. Bei substituierten Carbonsäuren führt dies zu einer deutlichen Stabilisierung des Säurerest-Anions $R-COO^-$.
    Das liegt daran, dass ein Teil der negativen Ladung des Anions auf das substituierte Chlor-Atom übergeht. Die Ladung, die auf die beiden Sauerstoffatome der Carboxylat-Gruppe aufgeteilt werden muss, ist dadurch geringer. $H^+$-Ionen werden daher weniger stark angezogen. Deshalb wird das Gleichgewicht der Dissoziationsreaktion auf die Seite der dissoziierten Form verschoben. Die Acidität ist also höher, der $pK_S$-Wert der Verbindung dementsprechend geringer.

  • Ordne die Cabonsäuren entsprechend ihrer $pK_S$-Werte.

    Tipps

    Je mehr $Cl$-Atome vorhanden sind, desto größer ist der -I-Effekt.

    $CH_3$-Gruppen nahe der Carbonsäure-Gruppe verringern die Acidität.

    Lösung

    Die dargestellten Carbonsäuren unterscheiden sich nicht hinsichtlich der Kettenlänge des organischen Rests, die Kette ist bei allen vier Verbindungen fünf Kohlenstoffatome lang. Die Verbindungen unterscheiden sich jedoch hinsichtlich der Substitution von Wasserstoffatomen durch Chlor-Atome oder Methyl-Gruppen.
    Methyl-Gruppen am Kohlenstoffatom, das die Carbonsäuregruppe trägt, verringern die Acidität. Die Verbindung C wird daher den höchsten $pK_S$-Wert haben. Darauf folgt die Verbindung B, die nur eine Methylgruppe am $\alpha$-C-Atom trägt.
    Die beiden übrigen Verbindungen haben keine substituierten Methylgruppen. Sie unterscheiden sich jedoch hinsichtlich der substituierten Chlor-Atome. Die Verbindung D trägt als einzige zwei Chlor-Substituenten, daher wird sie den geringsten $pK_S$-Wert aufweisen.