Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

pH-Wert-Berechnung – Einführung

Erfahre, wie man den $pH$-Wert von starken und schwachen Säuren sowie Basen berechnet. Das Video erklärt alles verständlich mit Formeln und Beispielen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 24 Bewertungen
Die Autor*innen
Avatar
André Otto
pH-Wert-Berechnung – Einführung
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

pH-Wert-Berechnung – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video pH-Wert-Berechnung – Einführung kannst du es wiederholen und üben.
  • Bestimme die pH-Werte folgender Lösungen.

    Tipps

    Natronlauge ist eine starke Base und Salzsäure eine starke Säure.

    lg10 = 1

    Lösung

    Starke Säuren und Basen dissoziieren vollständig. Mit Wasser zusammen bilden Säuren also vollständig Oxoniumionen $H_3O^+$ und Säurerestionen. Die starken Basen dissoziieren vollständig in Hydroxidionen $OH^-$ und die Metallkationen.

    Der pH-Wert ist definiert als negativ dekadischer Logarithmus der Konzentration an Oxoniumionen in der Lösung. Dissoziieren Säuren nun vollständig in ihre Ionen, kann die Konzentration der Oxoniumionen gleich der Konzentration der Säure gesetzt werden und es ergibt sich folgende Gleichung: $pH = -lg~c(HA)$ Eine Säure mit einer Konzentration von $0,01 \frac{mol}{l}$ hat also einen pH-Wert von $2$.

    Bei starken Basen entspricht der pOH-Wert der Konzentration der Base. Um den pH-Wert zu berechnen, subtrahierst du den pOH-Wert einfach von 14. Damit ergibt sich bei einer Konzentration von $0,01 \frac{mol}{l}$ für eine Base ein pH-Wert von 14-2 = 12

  • Berechne die pH-Werte folgender Lösungen.

    Tipps

    Der pH-Wert einer Base berechnet sich: pH = 14-pOH.

    Lösung

    Bei der Berechnung von pH-Werten solltest du dir zunächst genau anschauen, welche Lösung vorliegt. Bei starken Säuren und Basen erfolgt die Dissoziation vollständig. Das bedeutet, die Konzentration der Säure entspricht der Konzentration an Oxoniumionen (Hydroniumionen) und die Konzentration der Base entspricht der Konzentration der Hydroxidionen. Bildest du nun den negativ dekadischen Logarithmus der Säurekonzentration erhältst die den pH-Wert der Lösung. Setzt du die Konzentration der Base ein, erhältst du den pOH-Wert. Um den pH-Wert nun zu ermitteln, musst du erst den pOH-Wert von 14 subtrahieren.

    Liegt nun allerdings eine schwache Säure, wie Schwefelwasserstoff vor, kannst du nicht die Konzentration der Säure gleich der Oxoniumionenkonzentration setzen. Die schwache Säure dissoziiert nicht vollständig. Die Formel, die du hier anwendest, bezieht den $pK_S$-Wert der Säure mit ein.

  • Entscheide, ob folgende Säuren schwach oder stark sind.

    Tipps

    Starke Säuren dissoziieren vollständig.

    $pK_S$-Werte von Säuren:

    • Salzsäure: -6
    • Schwefelsäure: -3
    • Salpetersäure: -1,32
    • Zitronensäure: 3,13
    • Essigsäure: 4,75
    • Schwefelwasserstoff: 7,1

    Der $pK_S$-Wert ist der negativ dekadische Logarithmus der Säurekonstante $K_S$. Je kleiner der $pK_S$-Wert also, desto größer $K_S$.

    Lösung

    Ob eine Säure stark oder schwach ist, hängt mit ihrer Fähigkeit zu dissoziieren zusammen. Eine Aussage darüber, wie stark Säuren dissoziieren, erhältst du durch das Massenwirkungsgesetz. Die Konstante $K_S$ gibt dir das Verhältnis von Ionen zu undissoziierter Säure an. Je größer also diese Konstante, desto weiter liegt das Gleichgewicht auf Seiten der Ionen und desto stärker ist die Säure. Der $pK_S$-Wert ist nun der negativ dekadische Logarithmus dieser Konstante. Die $pK_S$-Werte findest du tabelliert in deinem Tafelwerk. Sehr starke Säuren, wie die Salzsäure, haben also sehr kleine $pK_S$-Werte und Schwefelwasserstoff entsprechend große.

  • Bestimme den pH-Wert folgender Lösungen mittels Rotkohlindikator.

    Tipps

    Handelt es sich um eine Säure oder Base? Ist sie stark oder schwach?

    Lösung

    Indikatoren sind Farbstoffmoleküle, die je nach pH-Wert ihre Farbe ändern können. Rotkohl besitzt auch solche Farbstoffmoleküle. Sein Farbspektrum geht von rot über violett, blau, grün bis gelb, wenn sich der pH-Wert schrittweise erhöht. Bei einer starken Säure mit einer Konzentration von $0,1 \frac{mol}{l}$ liegt der pH-Wert bei $1$, also so niedrig, dass der Indikator rot gefärbt ist. Eine Ethanollösung ist nahezu neutral und daher blau. Ammoniak ist eine schwache Base und dissoziiert nicht vollständig. Bei einer Lösung mit einer Konzentration von $0,01 \frac{mol}{l}$ liegt der pH-Wert bei $10,6$. Der Indikator färbt sich daher grün. Natronlauge mit einer Konzentration von $0,1 \frac{mol}{l}$ hat einen sehr hohen pH-Wert von $13$ und daher färbt sich die Indikatorlösung gelb.

  • Erkläre, was man unter einer schwachen Säure versteht.

    Tipps

    Die Formel zur Berechnung des pH-Wertes von schwachen Säuren lautet: $ pH = \frac{1}{2} (pK_S - lgc(HA))$

    Lösung

    Im Unterschied zu starken Säuren dissoziieren schwache Säuren in Wasser nicht vollständig. Zur pH-Wert-Berechnung kann daher nicht einfach die Konzentration der Säure der Konzentration an $H_3O^+$-Ionen gleich gesetzt werden. Die Formel ergibt sich aus dem Massenwirkungsgesetz, wobei der $pK_s-Wert$ mit berücksichtigt werden muss.

  • Berechne die Stoffmenge an NaOH in folgendem Beispiel.

    Tipps

    Der pH-Wert berechnet sich durch Subtraktion des pOH-Wertes von 14.

    Der pH-Wert ist definiert als der negativ dekadische Logarithmus der Konzentration an $H_3O^+$-Ionen. Bei einem hohen pH-Wert ist die Konzentration also gering.

    Natriumhydroxid ist eine starke Base.

    Lösung

    Natriumhydroxid ist eine starke Base und dissoziiert daher vollständig. Die Konzentration der Hydroxidionen kann daher gleich der Konzentration der Base gesetzt werden. Die Konzentration der Hydroxidionen gibt dir den pOH-Wert an. Du berechnest also zunächst aus dem gegebenen pH-Wert den pOH-Wert:

    • $pOH = 14 - pH$
    • $pOH = 14 - 12 = 2$
    Mit dem pOH-Wert kannst du nun die Konzentration der Hydroxidionen berechnen, die ja gleich der Konzentration der Base ist.
    • $pOH = -lg~c(Base)$
    • $c(Base) = 10^{-pOH}$
    • $c(Base) = 10^{-2}$
    • $c = 0,01~mol/l$
    Die ermittelte Konzentration gibt dir nun die Stoffmenge pro Liter an. Da du 500 ml der Natronlauge hast, teilst du die Stoffmenge durch 2.
    • $c = \frac{n}{V}$
    • $n = c \cdot V$
    • $n = 0,01~ \frac{mol}{l} \cdot 0,5~l$
    • $n = 0,005~mol$