sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Wärmekapazität 06:51 min

Textversion des Videos

Transkript Wärmekapazität

Dies ist ein Video zum Thema Wärmekapazität. Es gilt: Alle Stoffe haben eine unterschiedliche Wärmekapazität. Und was heißt das nun? Wir haben hier 2 verschiedene Stoffe, einmal Wasser und einmal einen Löffel aus Silber. Und beide wollen wir nun mit gleicher Flamme erhitzen. Schnell werden wir merken, dass die beiden Stoffe unterschiedlich lange brauchen, um dieselbe Temperatur zu erreichen. Das liegt an der unterschiedlichen Wärmekapazität der Stoffe. Diese gibt an, wie viel Wärmemenge, also Energie, benötigt wird, um einen Stoff von 1kg um 1°C zu erhitzen. Das Formelzeichen der Wärmekapazität ist der Buchstabe klein c. Und die Einheit der Wärmekapazität ist Joule geteilt durch Kilogramm × Kelvin: [c]=J/(kg×K). Die Wärmekapazität von Wasser ist sehr groß. Sie beträgt 4,187J/(kg×K). Die Wärmekapazität von Silber dagegen ist sehr klein. Sie beträgt 0,234J/(kg×K). Und was bedeutet das? Um Wasser zu erhitzen, benötigt man mehr Energiezufuhr als für diesen Silberlöffel. Hier benötigt man weniger. Und wie viel Energie müssen wir genau zuführen, wenn wir die beiden Objekte um 20°C erhitzen wollen? Dazu gibt es eine Formel. Die lautet: Q (das ist die zugeführte oder abgeführte Wärme in Joule) = c (also die spezifische Wärmekapazität) ×m (Masse des Stoffes) × ΔT (also dem Temperaturunterschied): Q=c×m×ΔT. Also berechnen wir doch noch einmal, wie viel Energie wir dem Wasser zuführen müssen. Q(von Wasser)=4,187J/(kg×K) (die Wärmekapazität) ×1kg (wenn wir 1l Wasser haben) ×20°K (wenn wir das Wasser 20°C erhitzen wollen). Und das ist dann gleich: Betrachten wir zunächst die Einheiten. Die kg kürzen sich weg, die K kürzen sich weg, übrig bleibt also nur J. Dann erhalten wir die Energiemenge 83,74J, die wir dem Wasser zuführen müssen. Das Gleiche können wir jetzt auch für diesen Silberlöffel hier berechnen. Dann erhalten wir: Q(vom Löffel)=4,68J, also um einiges weniger als die Energie, die wir dem Wasser zuführen mussten. Die spezifische Wärmekapazität zeigt aber nicht nur, dass es länger dauert, Wasser zu erhitzen, sondern sie bedeutet auch, dass Wasser mehr Wärme speichern kann. Und diese Wärme gibt das Wasser dann später langsam wieder ab. Das hat eine interessante Bedeutung für das Klima an Orten, die in der Nähe vom Meer liegen. Im Sommer nämlich ist das Meer noch kalt und es wärmt sich nur ganz langsam auf, das heißt, es hat eine kühlende Wirkung. Im Winter jedoch ist die Luft draußen kälter und das Meer kann die wahnsinnige Menge an Wärme, die es im Sommer gespeichert hat, langsam wieder abgeben und erwärmt dadurch natürlich die Luft. Und das heißt, das Klima am Meer ist insgesamt viel stabiler. Denn das Meer schafft im Winter wie im Sommer einen Ausgleich zur Lufttemperatur. Nun noch ein letztes Beispiel. Aus welchem Material sollte man sich sein Haus bauen? Lieber aus Beton oder ist es aus Holz besser? Betrachten wir dazu einmal die spezifischen Wärmekapazitäten der Materialien. Beton hat eine Wärmekapazität von 0,88J/(kg×K). Und die Wärmekapazität von Holz ist wesentlich größer, sie beträgt 1,7J/(kg×K). Also welches Material ist nun besser zur Wärmeisolierung? Es ist in diesem Fall das Holz, denn es hat eine höhere Wärmekapazität, wie wir gesehen haben. Das bedeutet, im Sommer nimmt es die Wärme von außen nicht so schnell auf und es kühlt das Haus von innen. Im Winter dagegen gibt es die gespeicherte Wärme nach innen ab, es wärmt also. Also: Besser als ein Betonhaus zu bauen ist es, ein Holzhaus zu bauen. Denn es wirkt wie das Meer, es speichert die Wärme. Ich hoffe, das Video konnte euch helfen, die spezifische Wärmekapazität zu verstehen.

33 Kommentare
  1. Hallo Undestructable,

    es stimmt, dass T=80°C nicht T=80 K sind, jedoch sind ΔT = 80°C = 80 K.

    Das Delta (Δ) vor dem T gibt immer einen Temperaturunterschied an.

    Beispiel:

    T₁ = 0°C = 273,15 K

    T₂ = 80°C = 353,15 K

    ΔT = T₂ - T₁ = 80°C - 0°C = 80°C

    ΔT = T₂ - T₁ = 353,15 K - 273,15 K = 80K

    ΔT = 80°C = 80 K

    Liebe Grüße aus der Redaktion.

    Von Karsten S., vor etwa einem Jahr
  2. 80 Grad Celsius sind doch nicht gleich 80 Kelvin
    Also kann die Aufgabe gar nicht stimmen.

    Von Undestructable, vor etwa einem Jahr
  3. schlecht

    Von Jan Jac, vor mehr als einem Jahr
  4. hab alles richtig

    Von Patrdiedrich, vor mehr als 2 Jahren
  5. @Lotti,

    nein das ist in der Übung nicht falsch. Celsius und Kelvin haben zwar einen unterschiedlichen Startpunkt für 0, jedoch haben sie die selben Skalenabstände. Daher kann man bei Temperaturdifferenzen beide Einheiten analog verwenden.
    Bei Alltagsbeispielen wird man immer die Einheit Celsius verwenden, bei Rechnungen aber immer Kelvin.

    Zur Anschaulichkeit habe ich aber einen Satz hierzu in der Übung ergänzt.

    Von Karsten S., vor mehr als 3 Jahren
Mehr Kommentare

Wärmekapazität Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wärmekapazität kannst du es wiederholen und üben.

  • Gib an, was man unter dem Begriff der spezifischen Wärmekapazität versteht.

    Tipps

    Erwärmt sich Holz genauso schnell wie Stahl?

    Wie lautet die Einheit der spezifischen Wärmekapazität?

    $[c]=\frac{J}{kg\cdot K}$

    Lösung

    Die spezifische Wärmekapazität ist ein Begriff aus der Thermodynamik und bezeichnet das Vermögen eines Körpers, Energie in Form von thermischer Energie zu speichern. Die spezifische Wärmekapazität besitzt das Formelzeichen $c$.

    Die spezifische Wärmekapazität gibt dabei an, wie groß die benötigte Wärmemenge ist, um ein Kilogramm eines Stoffes um ein Grad zu erhitzen.

    Alle Stoffe haben dabei unterschiedliche spezifische Wärmekapazitäten.

  • Gib an, welche Auswirkungen die hohe Wärmekapazität des Wassers auf das Klima hat.

    Tipps

    Das Wasser hat eine Wärmekapazität von $c=4,187~\frac{kJ}{kg\cdot K}$. Das ist ein relativ hoher Wert für eine Wärmekapazität.

    Kaltes Wasser erwärmt sich nur langsam.

    Warmes Wasser kühlt nur langsam ab.

    Lösung

    Seen, Meere und Ozeane nehmen großen Einfluss auf das Klima, da sie im Sommer viel Wärme speichern und einen großen Teil davon im Herbst und Winter wieder an die Umgebung abgeben. Grundlage hierfür ist die besonders hohe Wärmekapazität von Wasser ( $c=4,187~\frac{kJ}{kg\cdot K}$ ). Für einen Stoff mit sehr hoher Wärmekapazität gilt: Er erwärmt sich nur sehr schwer und kühlt auch nur sehr langsam wieder ab.

    Im Frühjahr und Frühsommer wird deswegen der sich schneller erwärmenden Umgebung (der Luft) erst langsam Wärme entzogen: Im frühen Sommer kühlt das Meer die Luft.

    Im Winter verhält es sich genau entgegengesetzt. Das Wasser möchte seine Wärme nur langsam und noch sehr spät an die kalte Winterluft abgeben: Im frühen Winter erwärmt das Meer die Luft.

  • Gib zu den gegebenen Formelzeichen die dazugehörige physikalische Größe an.

    Tipps

    Welches Formelzeichen hat die Masse?

    $Q=c\cdot m \cdot \Delta T$

    Lösung

    Mit Hilfe der Gleichung $Q=c\cdot m \cdot \Delta T$ lässt sich die abgegebene oder hinzugefügte Wärmemenge eines Systems berechnen. Da $Q$ die zu berechnende Größe ist, gehört dieses Formelzeichen zur Wärmemenge.

    Das Formelzeichen für die $Masse$ ist dir sicherlich auch noch bekannt: das kleine $m$.

    Wenn sich ein Objekt erhitzt oder abkühlt, ist es sicherlich notwendig zu wissen, um wie viel Grad es seine Temperatur verändert hat. Diese Temperaturänderung wird mit dem $\Delta T$ symbolisiert. Das Delta $\Delta$ steht in der Physik in der Regel immer für eine Änderung ($\Delta t,~ \Delta s,~ \Delta F$).

    Somit bleibt nur noch das kleine $c$ für die $Wärmekapazität$. Diese physikalische Größe ist materialabhängig und wird in $\frac{J}{kg\cdot K}$ angegeben.

  • Gib die hinzugeführte Wärme $Q$ an, wenn $2~kg$ Wasser um $80°C$ erhitzt werden.

    Tipps

    Schreibe dir die gegebenen und gesuchten Größen auf.

    $Q=c\cdot m \cdot \Delta T$

    $c_{\text{Wasser}}=4,187~\frac{kJ}{kg\cdot K}$

    Hast du das Ergebnis richtig gerundet?

    Lösung

    Um diese Aufgabe lösen zu können, schreiben wir zuerst die gegebenen und gesuchten Größen auf, halten die Formel zur Berechnung fest, setzen die Zahlenwerte ein und formulieren einen Antwortsatz.

    Gegeben: $c_W=4,187~\frac{kJ}{kg\cdot K}=4,187\cdot 10^3 \frac{J}{kg\cdot K}$, $~~~~$ $m=2~kg$, $~~~$ $\Delta T=80^\circ C=80 K$

    Die Gleichsetzung von Grad Celsius und Kelvin für Temperaturdifferenzen funktioniert hier, da beide Temperaturskalen die gleichen Skalenabstände besitzen.

    Gesucht: $Q$ in $kJ$

    Formel: $Q=c\cdot m \cdot \Delta T$

    Berechnung: $Q=c\cdot m \cdot \Delta T=4,187\cdot 10^3 \frac{J}{kg\cdot K}\cdot 2~kg \cdot 80~K=669920~\frac{J \cdot kg\cdot K}{kg\cdot K}=669,9~kJ$

    Antwortsatz: Die benötigte Wärmemenge beträgt $669,9~kJ$.

  • Gib die Einheit der spezifischen Wärmekapazität an.

    Tipps

    $Q=c\cdot m\cdot \Delta T$

    $c=\frac{Q}{m\cdot \Delta T}$

    $[T]=K$

    $[m]=kg$

    $[Q]=J$

    Lösung

    Die spezifische Wärmekapazität $c$ kann mit folgender Formel berechnet werden: $c=\frac{Q}{m\cdot \Delta T}$.

    Die Wärmemenge $Q$ besitzt die Einheit Joule $[Q]=J$, die Masse $m$ die Einheit Kilogramm $[m]=kg$ und die Temperatur $T$ wird in Kelvin $[T]=K$ angegeben.

    Setzen wir diese Information in die Gleichung ein, erhalten wir:

    $[c]=\frac{J}{kg\cdot K}$

  • Gib das Material bei folgenden gegebenen Werten an: $Q=17~kJ$, $m=100~g$, $\Delta T=100°C$.

    Tipps

    Schreibe dir die gegebenen und gesuchten Größen auf.

    $Q=c\cdot m \cdot \Delta T$

    $c=\frac{Q}{m\cdot \Delta T}$

    Lösung

    Um diese Aufgabe lösen zu können, schreiben wir zuerst die gegebenen und gesuchten Größen auf, halten die Formel zur Berechnung fest, setzen die Zahlenwerte ein und formulieren einen Antwortsatz.

    Gegeben: $Q=17~kJ=17.000~J$, $~~~~$ $m=0,1~kg$, $~~~$ $\Delta T=100~K$

    Gesucht: $c$ in $\frac{kJ}{kg\cdot K}$

    Formel: $Q=c\cdot m \cdot \Delta T$

    Diese Formel ist nach der spezifischen Wärmekapazität $c$ umzustellen:

    $c=\frac{Q}{m\cdot \Delta T}$

    Berechnung: $c=\frac{Q}{m\cdot \Delta T}=\frac{17.000~J}{0,1~kg \cdot 100~K}=1.700~\frac{J}{kg\cdot K}=1,7~\frac{kJ}{kg\cdot K}$

    Antwortsatz: Die spezifische Wärmekapazität beträgt $1,7~kJ$. Somit handelt es sich um Holz.