- Physik
- Mechanik
- Differenzialgleichungen der mechanischen Schwingungen
- Mechanische Schwingung
Mechanische Schwingung
Starte dafür schnell & einfach deine kostenlose Testphase
und verbessere mit Spaß deine Noten!
-
Lernvideos für alle Klassen und Fächer, die den Schulstoff kurz und prägnant erklären.
-
steigere dein Selbstvertrauen im Unterricht, indem du vor Tests und Schularbeiten mit unseren unterhaltsamen interaktiven Übungen lernst.
-
lerne unterwegs mit den Arbeitsblättern zum Ausdrucken – zusammen mit den dazugehörigen Videos ermöglichen diese Arbeitsblätter eine komplette Lerneinheit.
-
24h-Hilfe von Lehrer*innen, die immer helfen, wenn du es brauchst.
Testphase jederzeit online beenden
Sie sind Lehrkraft? Hier entlang!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Mechanische Schwingungen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Mechanische Schwingung
In diesem Video lernst du, was eine mechanische Schwingung ist. Dabei handelt es sich um eine periodische Bewegung eines Körpers um seine Gleichgewichtslage. Die Ursache einer Schwingung ist die Auslenkung aus dieser Gleichgewichtslage durch eine Störung, woraufhin eine rücktreibende Kraft einsetzt, die versucht, das Gleichgewicht wiederherzustellen. Die zur Beschreibung einer Schwingung wichtigen Eigenschaften Auslenkung, Amplitude, Periodendauer und Frequenz werden vorgestellt und im letzten Kapitel stellen wir die Schwingungsgleichung für eine gedämpfte Schwingung auf.
Transkript Mechanische Schwingung
Hallo und herzlich willkommen zu Physik mit Kalle. Wir beschäftigen uns heute, aus dem Themengebiet Schwingungen und Wellen, mit mechanischen Schwingungen. Für dieses Video solltet ihr bereits den Film über mechanische Wellen gesehen haben. Wir lernen heute was, eine mechanische Schwingung ist, wie man sie beschreiben kann und zum Schluss werden wir noch die Schwingungsgleichung aufstellen, die den ganzen Vorgang beschreibt. Wir haben im letzten Film erfahren, eine mechanische Welle ist die Ausbreitung von mechanischen Schwingungen durch ein Übertragungsmedium. Aber nun wollen wir natürlich wissen, was ist denn überhaupt eine mechanische Schwingung? Als mechanische Schwingung bezeichnet man die periodische, also mit der Zeit immer wiederkehrende Bewegung eines Körpers, um seine Gleichgewichtslage. In der Animation rechts könnt ihr ein Beispiel für so eine Schwingung sehen. Wenn ihr eine Kugel hochhebt und dann loslasst, dann wird sie, um den Gleichgewichtspunkt an ihrer Feder, schwingen. Die Ursache für eine Schwingung, wie gerade im Beispiel, ist folgende. Ein Körper wird durch eine Störung aus seiner Gleichgewichtslage entfernt, woraufhin eine rücktreibende Kraft einsetzt, die versucht, das Gleichgewicht wieder herzustellen. Unsere Kugel schießt aber nun mit Schwung über den Gleichgewichtspunkt hinaus, bis sie auf der anderen Seite der Feder gebremst und wieder zurückgeschleudert wird. Und so fängt sie an, zwischen den beiden Maximalpunkten ihrer Auslenkung zu schwingen. Als Nächstes wollen wir uns ansehen, anhand welcher Eigenschaften man eine mechanische Schwingung beschreiben kann. Im Bild seht ihr ein Auslenkung-Zeit-Diagramm für unsere Metallkugel. Ich habe die Auslenkung mit y bezeichnet. Nun kann ich natürlich praktisch die Auslenkung y zu jedem Zeitpunkt einfach in meiner blauen Kurve ablesen. Wie ihr seht, wiederholt sich ja die gleiche Schwingung immer wieder und die Dauer, die mein System benötigt, um einen einzigen Schwingvorgang auszuführen, nenne ich die Periodendauer. Eine weitere wichtige Eigenschaft einer Schwingung ist die maximale Auslenkung. Diese nenne ich die Amplitude. Wir merken uns also, Eigenschaften, die ich zur Beschreibung meiner mechanischen Schwingung verwenden kann, sind unter anderem: Die Auslenkung, die die Entfernung zur Gleichgewichtslage ist, ich habe sie mit y(t) bezeichnet. Die Amplitude, die die maximale Auslenkung meines Systems ist. Sie trägt den Buchstaben A. Die Periodendauer ist die Zeit, die mein System benötigt, um einen einzelnen Schwingvorgang durchzuführen. Sie trägt den Buchstaben T. Ebenfalls wichtig ist die Frequenz einer mechanischen Schwingung. Sie gibt mir an, wie viele Schwingvorgänge mein System pro Sekunde ausführt. Die Letzten beiden hängen natürlich direkt zusammen. Die Frequenz gibt mir die Anzahl der Schwingvorgänge pro Sekunde an und die Periodendauer ist die Dauer eines Schwingvorgangs. Also ist die Frequenz f=1/T. Außerdem merken wir uns. Die Amplitude A ist die maximale Auslenkung. Ich schreibe A=ymax. Zum Schluss wollen wir nun noch versuchen, die Schwingungsgleichung aufzustellen, mit deren Hilfe wir unsere mechanische Schwingung mathematisch beschreiben können. Wir wissen, F=m×a oder anders geschrieben F=m×y^.. also die zweite Ableitung der Auslenkung nach der Zeit. Dies ist das 2.Newtonsche Axiom. Außerdem könnte eine Kraft wirken, die unseren Schwingvorgang dämpft. Die Formel für so eine dämpfende Kraft wäre FD=-beta×v oder anders geschrieben FD=-beta×v^. Denn die erste Ableitung der Auslenkung nach der Zeit, ist ja die Geschwindigkeit. Als Letztes fehlt uns nun noch die Feder, die die rücktreibende Kraft auf unsere Kugel ausübt. Die Formel für die Federkraft gibt uns das Hooksche Gesetz, das besagt: Die von einer Feder ausgeübte Kraft FH=-k×y, wobei k die Federkonstante ist. Damit kann ich schreiben: Die Summe aller Kräfte F=m×y^..=-beta×y^.-ky. Wenn ich das nun alles auf eine Seite bringe, erhalte ich die Schwingungsgleichung. Sie lautet my^..+beta×y^.+ky=0. Dabei ist, damit wir nicht durcheinander kommen, M die Masse, beta die Dämpfungskonstante, k die Federkonstante, y^.. die Beschleunigung, y^. die Geschwindigkeit und y die Auslenkung. Wir stellen gleich mal fest, da hier sowohl die Auslenkung, als auch ihre erste und zweite Ableitung nach der Zeit vorkommen, handelt es sich bei der Schwingungsgleichung um eine Differenzialgleichung und wie wir die für eine harmonische Schwingung lösen können, das sehen wir im nächsten Film. Wir wollen noch mal wiederholen, was wir heute gelernt haben: Als mechanische Schwingung bezeichnet man die periodische Bewegung eines Körpers um seine Gleichgewichtslage. Eigenschaften einer mechanischen Schwingung sind unter anderem: die Auslenkung, also die Entfernung zur Gleichgewichtslage, die Amplitude A, die die maximale Auslenkung ist, die Periodendauer T, die mir angibt, wie lange mein System braucht, um einen einzigen Schwingungsvorgang auszuführen und die Frequenz F, die mir sagt, wie viele solcher Schwingungsvorgänge pro Sekunde stattfinden. Anders gesagt, die Frequenz F=1/T und die Amplitude A=ymax. Die Schwingungsgleichung einer mechanischen Schwingung mit Dämpfung lautet: m×y^..+beta ×y^.+ky=0. So, das war es schon wieder für heute. Ich hoffe ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.
Mechanische Schwingung Übung
-
Gib den Ablauf für den Beginn einer mechanische Schwingung bei einer Feder an.
TippsBevor etwas passiert, ruht das System.
Die Animation zeigt dir ja bereits den Ablauf der Bewegung. Versuche, diese Schritt für Schritt nachzuverfolgen.
LösungUm besser mit periodischen Schwingungen arbeiten zu können, betrachten wir einen einzelnen Schwingungsvorgang genauer.
Zunächst befindet sich die Feder in Gleichgewichtslage, aus der sie dann mit einer Kraft ausgelenkt wird. Im Bestreben, wieder in ihre Gleichgewichtslage zu gelangen, schnellt die Feder zurück. Die dadurch komprimierte Feder stößt die Masse dann wieder zurück.
Da es in der Praxis keine völlig ungedämpften Schwingungen gibt, wird dieser Massenpunkt sich früher oder später wieder in der Gleichgewichtslage befinden. In der Physik wird die Dämpfung allerdings oft vernachlässigt, um sich besser mit der Schwingung selbst beschäftigen zu können.
-
Beschrifte das Auslenkungs-Zeit-Diagramm.
TippsDie maximale Auslenkung hat einen besonderen Namen.
Der auf der x-Achse markierte Bereich grenzt eine ganze Schwingung ein.
LösungSolche Schwingungen werden dir noch oft begegnen.
Die Auslenkung verläuft auf der y-Achse und ist meist zeitabhängig.
Die maximale Auslenkung nennt man Amplitude.
Die Periodendauer ist die Zeit, die vergeht, bis eine ganze Schwingung vollendet ist. Normalerweise lässt sich diese Zeit an der x-Achse ablesen, aber nur wenn diese auch die Zeit-Achse ist.
-
Erkläre die Begriffe.
TippsAchte auf die Schreibweise f oder F.
LösungEin paar der Begriffe hast du vielleicht schon in Aufgabe 2 benutzt.
Nun gehen wir das aber mal etwas theoretischer an.
Bei einer harmonischen Schwingung pendelt die Auslenkung um die Gleichgewichtslage. Die jeweils größte Auslenkung heißt Amplitude.
Die Periodendauer ist die Zeit, die eine ganze Schwingung benötigt.
Die Frequenz f hat die Formel $f=\dfrac{1}{T}$ und gibt die Schwingungen pro Sekunde an.
„pro" Sekunde bedeutet immer $\dfrac{1}{\textrm{Sekunde}}$.
Während die Periodendauer eine Zeiteinheit ist, ist die Frequenz die Anzahl der Schwingungen pro Zeit. Wir messen nun für eine einzige Schwingung die Zeit, also mit der Schwingungszahl 1.
Diese Einheit, $\dfrac{1}{\textrm{Sekunde}}$ heißt übrigens Hertz (Hz).
-
Stelle eine Schwingungsgleichung auf.
TippsÜberlege dir, welche Faktoren bei einer Federschwingung wichtig sein könnten.
LösungMithilfe der Schwingungsgleichung kann man (gedämpfte)Schwingungen genau beschreiben. Es ist also klar, dass es hilfreich ist zu wissen, woraus sie gemacht ist.
$m\ddot{y}$ ist das 2. Newton'sche Axiom. Dieses ist gleich $-\beta\dot{y}-ky$, wobei $\beta$ die Dämpfungskonstante, $\dot{y}$ die Geschwindigkeit v und $k$ die Federkonstante ist.
Stellt man die Gleichung um, wird eine homogene Differentialgleichung (DGL) daraus: $\begin{align*} m\ddot{y} &=~-\beta\dot{y}-ky \\ 0&=~m\ddot{y}+\beta\dot{y}+ky \end{align*}$
-
Nenne die Eigenschaften einer schwingenden Feder.
TippsDas Objekt schwingt um eine Art Zentrum oder Mittelpunkt. Welcher könnte das sein?
LösungDas Verhalten von schwingenden Objekten zu kennen und zu beschreiben, ist in der Physik oft unerlässlich.
Eine ausgelenkte Feder schwingt um ihre Gleichgewichtslage. Das ist die Position, in der sie ruht, also keine Bewegungen durchführt.
Die Amplitude ist die maximale Auslenkung.
Die Schwingung verläuft in beide Richtungen gleichförmig.
-
Entscheide in welche Richtung ein schwingendes System von äußeren Kräften beeinflusst wird.
TippsUnterscheide zwischen horizontaler und vertikaler Bewegung.
Überlege dir Kräfte, die auf das System wirken könnten. Kräfte, die z.B. immer da sind. Denke an einen realen Aufbau.
LösungIn der Realität sind mechanische Schwingungen noch anderen Kräften ausgesetzt. Dadurch läuft eine Schwingung gar nicht so gleichförmig ab, wie es in einem konstruierten Fall, in dem nur die Kraft der anfänglichen Auslenkung betrachtet wird, zu sein scheint.
In diesem Fall geht es um eine Kraft, die in eine bestimmte Richtung wirkt: die Gewichtskraft $F_G$.
Sie wirkt immer zum Erdmittelpunkt. Da die Aufbauten klassisch über dem Boden hängend aufgebaut sind, wirkt $F_G$ nach unten.
Das bedeutet, sie verstärkt nach unten gerichtete Kräfte und schwächt bzw. dämpft nach oben gerichtete Kräfte. Dadurch ist die Federbewegung nach unten stärker als nach oben.
Dies gilt allerdings nur für Objekte mit einer Masse. In der Quantenphysik werden diese Kräfte oft vernachlässigt.
Am Fadenpendel wirkt die Gewichtskraft zwar auch, aber auf beide Richtungen gleich. Daher schwingt das Pendel nach links und rechts gleich.
8.794
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.376
Lernvideos
36.245
Übungen
32.795
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt
@all
Hier sind die Links zu weiteren Videos die die Mathematischen Hintergründe beschreiben.
http://www.sofatutor.com/mathematik/videos/winkelfunktionen-spezielle-funktionswerte
http://www.sofatutor.com/mathematik/videos/sinusfunktion-allgemein-mit-parametern
http://www.sofatutor.com/mathematik/videos/periodische-funktionen-definition-und-beispiel-1
http://www.sofatutor.com/mathematik/videos/periodische-funktionen-definition-und-beispiel-2
http://www.sofatutor.com/mathematik/videos/partielle-integration-mit-sinus-und-cosinustermen
Mathematisch sagt mir das so gar nichts.
Bitte Verlinkung zu den Videos, die dafür nötig sind, etc., um dies Video dann zu verstehen...
Sehr gut erklärt,danke Kalle :-)