Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Elektrische Feldstärke E

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 3.9 / 23 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Elektrische Feldstärke E
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Elektrische Feldstärke E Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Elektrische Feldstärke E kannst du es wiederholen und üben.
  • Beschreibe die elektrische Feldstärke.

    Tipps

    $\vec r$ ist ein Vektor und hat somit mehrere Koordinaten. Wie viele Koordinaten hat ein Zeitpunkt?

    Hat die Coulomb-Kraft eher etwas mit Ladungen oder eher etwas mit Massen zu tun?

    Lösung

    Die elektrische Feldstärke wird geschrieben als $\vec E(\vec r)$. Das $\vec r$ ist ein Vektor und hat somit mehrere Dimensionen. Es handelt sich also um einen Ort und nicht um einen Zeitpunkt.

    Die Feldstärke gibt die Stärke des Feldes an, wie man am Begriff "Feldstärke" gut erkennen kann. Das elektrische Feld ist ein Kraftfeld. Es äußert sich durch die Ausübung von Kräften auf Ladungen.

  • Vergleiche Schwerkraft und Coulombkraft.

    Tipps

    Welche Vorzeichen können Ladungen haben? Welche Vorzeichen können Massen haben?

    Was bedeutet das Vorzeichen der Kraft für die Richtung?

    $k=\frac{1}{4\pi\epsilon}$

    Lösung

    Die Formel für die Coulombkraft zwischen zwei Punktladungen ist:

    $F(r)=k\frac{Q_1Q_2}{r_{12}^2}$.

    Die Konstante $k=\frac{1}{4\pi\epsilon}$ mit $\epsilon$ der elektrischen Feldkonstante.

    Ladungen treten mit positiven oder negativen Vorzeichen auf. Daher wird die Coulombkraft positiv oder negativ, je nachdem, ob die Ladungen $Q_1$ und $Q_2$ gleiche oder entgegen gesetzte Vorzeichen haben. Ein positives Vorzeichen der Kraft bedeutet, dass sie anziehend ist.

    Die Gleichung für die Gravitation zweier Punktmassen ist der Gleichung für die Coulombkraft zweier Punktladungen sehr ähnlich. Man muss die Ladungen $Q_1$ und $Q_2$ nur durch die Massen $m_1$ und $m_2$ vertauschen und die Konstante $k$ durch die Gravitationskonstante $G$.

    $F(r)=G\frac{m_1m_2}{r_{12}^2}$.

    Die Massen haben immer ein positives Vorzeichen. Die Schwerkraft ist also immer anziehend.

    Berechnet man Coulombkraft und Gravitationskraft zum Beispiel für ein Wasserstoffatom, dann findet man heraus, dass die Coulombkraft zwischen Kern und Elektron um einen Faktor $2,3\cdot 10^{39}$ größer ist als die Schwerkraft zwischen Kern und Elektron.

  • Berechne die Feldstärke.

    Tipps

    Erinnere dich an die Definition der Feldstärke.

    Lösung

    Gegeben ist die Ladung $Q=4\,C$ und die Kraft auf die Ladung $F=16\,N$. Gesucht ist die elektrische Feldstärke am Ort der Ladung.

    Die Gleichung für die elektrische Feldstärke ist $E=\frac{F}{Q}$. Wir setzen ein und erhalten:

    $E=\frac{F}{Q}=\frac{16\,N}{4\,C}=4\,\frac{N}{C}$.

    Erweitert man die Einheit mit Metern $m$, ergibt sich:

    $E=4\,\frac{N\cdot m}{C\cdot m}=4\,\frac{J}{C\cdot m}$, da $N\cdot m$ Joule ist.

    Joule pro Coulomb wiederum ist Volt. Also:

    $E=4\,\frac{V}{m}$.

  • Bringe Schwerkraft und Coulombkraft ins Gleichgewicht.

    Tipps

    Erinnere dich an die Formel für die Coulombkraft zwischen zwei Punktladungen.

    Die Formel für die Schwerkraft zwischen zwei Körpern der Massen $m_1$ und $m_2$ im Abstand $r$ ist

    $F=G\frac{m_1m_2}{r^2}$.

    Lösung

    Gegeben sind die elektrische Feldkonstante, die Massen und Ladungen. Gesucht ist der Wert, den die Gravitationskonstante haben müsste, damit im Wasserstoffatom die Schwerkraft und die Coulombkraft des Kerns auf das Elektron gleich groß sind.

    Die Gleichung für die Coulombkraft ist:

    $F=-\frac{1}{4\pi\epsilon}\frac{Q_1Q_2}{r^2}$.

    Die Gleichung für die Schwerkraft ist:

    $F=G\frac{m_1m_2}{r^2}$.

    Wenn wir die beiden Kräfte gleich setzen erhalten wir:

    $\frac{1}{4\pi\epsilon}\frac{Q_1\cdot Q_2}{r^2}=G\frac{m_1\cdot m_2}{r^2}$.

    Jetzt multiplizieren wir auf beiden Seiten mit $r^2$ und teilen durch $m_1\cdot m_2$. Dann erhalten wir

    $G=-\frac{1}{4\pi\epsilon}\frac{ Q_1\cdot Q_2}{ m_1\cdot m_2}$.

    Setzen wir ein für die Ladung des Elektrons $Q_1=-e$ und für die Ladung des Kerns $Q_2=e$ mit $e\approx 1,602\cdot 10^{-19}\,C$, für die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$, für die Elektronenmasse $m_1\approx 9,11\cdot 10^{-31}\,kg$ und für die Protonenmasse $m_2=1,67\cdot 10^{-27}\,kg$, dann ergibt sich:

    $G=\frac{1}{4\cdot 3,14\cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{1,602\cdot 10^{-19}\,C)^2}{9,11\cdot 10^{-31}\,kg\cdot 1,67\cdot 10^{-27}\,kg}=15\cdot 10^{-28}\frac{m\cdot C^2}{F\cdot kg^2}$.

    Für die Einheit haben wir $\frac{m\cdot C^2}{F\cdot kg^2}=\frac{m\cdot C^2\cdot V}{C\cdot kg^2}=\frac{m\cdot J}{ kg^2}=\frac{m\cdot kg\cdot m^2}{ kg^2\cdot s^2}=\frac{m^3}{ kg\cdot s^2}$. Wir brauchen also eine Gravitationskonstante von:

    $G=15\cdot 10^{-28} \frac{m^3}{ kg\cdot s^2}$, damit Schwerkraft und Coulombkraft im Wasserstoffatom gleich groß werden.

  • Identifiziere Einheiten der elektrischen Feldstärke.

    Tipps

    Die Einheit der Kraft ist Newton $N$.

    Die Einheit der Ladung ist Coulomb $C$.

    Lösung

    Die elektrische Feldstärke $E$ ergibt sich aus der Kraft $F$ auf eine Ladung $Q$ als $E=\frac{F}{Q}$. Die Einheit der Kraft ist Newton $N$ und die Einheit der Ladung ist Coulomb $C$. Die Einheit der elektrischen Feldstärke ist also $[E]=\frac{N}{C}$.

    Newton ist aber $N=kg\frac{m}{s^2}$, was sich aus Newtons zweitem Gesetz ergibt. Setzen wir das ein, erhalten wir:

    $[E]=\frac{kg\cdot m}{s^2\cdot C}$.

    Wenn wir $\frac{N}{C}$ mit Metern $m$ erweitern, finden wir:

    $[E]=\frac{N\cdot m}{m \cdot C}$.

    $N\cdot m=J$ das Joule und Joule pro Coulomb ist Volt. Also:

    $[E]=\frac{V}{m}$.

  • Berechne die Feldstärke einer Punktladung.

    Tipps

    Die Ladung des Kerns ergibt sich aus dem Produkt Elementarladung $e$ und der Zahl der Protonen.

    Erinnere dich an die Formel für das elektrische Feld eines Punktteilchens.

    Ein Proton trägt die Ladung $e\approx 1,602\cdot 10^{-19}\,C$.

    Lösung

    Gegeben sind die Zahl der Protonen $Z=26$ im Eisenkern und den Abstand vom Kern $r=2\cdot 10^-12\,m$. Gesucht ist die elektrische Feldstärke $E$ im Abstand $r$ vom Eisenkern.

    Die Formel für das elektrische Feld ist:

    $E=\frac{1}{4\pi\epsilon}\frac{Q}{r^2}$.

    Die Ladung des Kerns ergibt sich als $Q=Z\cdot e$, wobei $e$ die Elementarladung $e\approx 1,602\cdot 10^{-19}\,C$ ist. Epsilon ist die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$.

    Setzen wir ein erhalten wir:

    $E=\frac{1}{4\cdot 3,14 \cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{26\cdot 1,602\cdot 10^{-19}\,C}{(2\cdot 10^{-12}\,m)^2}=9,36\cdot 10^{15}\frac{m\cdot C}{F\cdot m^2}$.

    Farad ist Coulomb pro Volt. Deshalb ergibt sich für die Einheit:

    $\frac{m\cdot C}{F\cdot m^2}=\frac{m\cdot C\cdot V}{C\cdot m^2}=\frac{V}{m}$.

    Wir erhalten also:

    $E=9,36\cdot 10^{15}\frac{V}{m}$.

    Das ist eine extrem große Feldstärke. Die maximale Feldstärke in einem Plattenkondensator bei dem sich zwischen den Platten nur Luft befindet ist $3,3\cdot 10^{6}\,\frac{V}{m}$. Bei dieser Spannung kommt es zu einem Überschlag. Das heißt, Elektronen bewegen sich in einem Lichtbogen durch die Luft von der negativ geladenen zur positiv geladenen Platte des Kondensators.

    Der Abstand $r$ ist übrigens der Radius der kleinsten Elektronenbahn im Bohrschen Atommodell des Eisenatoms. Es ist also eine extrem große Feldstärke nötig, um ein Atom auf seiner Bahn zu halten. Man kann sich vorstellen, dass es sich dementsprechend schnell bewegt, da es ja ziemlich leicht ist.