Über 1,2 Millionen Schüler*innen nutzen sofatutor
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Die Linsengleichung

Inhaltsverzeichnis zum Thema Die Linsengleichung
Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Mit Spaß Noten verbessern

4.862

sofaheld-Level

6.572

vorgefertigte
Vokabeln

8.834

Lernvideos

38.593

Übungen

34.740

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 3.0 / 2 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die Linsengleichung
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Die Linsengleichung

Die Linsengleichung

Du weißt schon, was optische Linsen sind, wie man den Strahlengang zeichnet und was eine reelle Abbildung ist. Aber wie bestimmt man eigentlich, in welcher Entfernung das reelle Bild entsteht oder wie stark es vergrößert wird? Dazu benötigen wir die Linsengleichung. Diese Gleichung wollen wir im Folgenden herleiten.

Die Linsengleichung – Herleitung

Wir betrachten den Strahlengang für die reelle Abbildung, die durch eine Konvexlinse erzeugt wird. Dabei nennen wir die Höhe des Gegenstands $G$ (Gegenstandshöhe), die Entfernung zwischen Gegenstand und Mittelebene der Linse $g$ (Gegenstandsweite), die Höhe des Bilds $B$ (Bildhöhe) und die Entfernung zwischen Bild und Mittelebene $b$ (Bildweite).

Der Mittelstrahl bildet gemeinsam mit der optischen Achse, der Gegenstandshöhe $G$ und der Bildhöhe $B$ je ein rechtwinkliges Dreieck.

Linsengleichung Physik, Herleitung

Weil die Winkel $\alpha$ und $\alpha ‘$ identisch sind, müssen auch die Verhältnisse von $G$ zu $g$ und von $B$ zu $b$ identisch sein – denn in beiden Fällen entsprechen sie dem Tangens des Winkels $\alpha$. Damit können wir unsere erste Linsengleichung aufschreiben:

$\frac{G}{g} = \frac{B}{b}$

Diese Gleichung können wir auch umstellen, indem wir Bild- und Gegenstandshöhe auf die eine Seite bringen und Bild- und Gegenstandsweite auf die andere:

$\frac{b}{g} = \frac{B}{G}$

Wir betrachten jetzt die zwei rechtwinkligen Dreiecke, die durch den Parallelstrahl, die optische Achse und Bild- beziehungsweise Gegenstandshöhe gebildet werden.

Linsengleichung Erklärung, Herleitung

Der bildseitige Parallelstrahl schneidet die optische Achse genau im Brennpunkt $F_1$, der sich in der Entfernung der Brennweite $f$ von der Mittelebene befindet. Wie zuvor sind die Winkel der beiden Dreiecke identisch und wir bezeichnen sie mit $\alpha$. Im Fall des rot eingefärbten Dreiecks hat die Strecke auf der optischen Achse die Länge $f$. Im Fall des violett eingefärbten Dreiecks hat die Strecke auf der optischen Achse die Länge $b-f$, denn die gesamte Strecke entspricht gerade der Bildweite. Damit können wir über die Verhältnisse, die wieder jeweils dem Tangens des Winkels entsprechen, die zweite Gleichung aufstellen:

$\frac{G}{f} = \frac{B}{b-f} $

Wir stellen auch diese Gleichung noch um, indem wir alle Terme mit der Brennweite $f$ auf eine Seite ziehen. So erhalten wir:

$\frac{b-f}{f} = \frac{B}{G}$

In beiden Gleichungen, die wir bisher hergeleitet haben, steht auf einer Seite des Gleichheitszeichens der Term $\frac{B}{G}$. Wir können sie also gleichsetzen und erhalten:

$ \frac{b}{g} = \frac{b-f}{f} = \frac{b}{f} -\frac{f}{f} = \frac{b}{f} -1$

In den letzten beiden Termen haben wir schon vereinfacht, indem wir den Bruch auseinandergezogen und $f$ mit $f$ gekürzt haben. Jetzt können wir die $1$ durch Addition auf beiden Seiten auf die linke Seite ziehen und anschließend beide Seiten durch $b$ teilen. Damit erhalten wir:

$\frac{1}{b} + \frac{1}{g} = \frac{1}{f} $

Das ist die Definition der Linsengleichung, die manchmal auch Abbildungsgleichung genannt wird. Je nachdem welche Größe du mit der Linsengleichung berechnen willst, musst du sie umformen. Du kannst zum Beispiel die Linsengleichung umstellen, um die Bild- und Gegenstandsweite zu berechnen, die du für eine bestimmte Vergrößerung benötigst.

1 Kommentar
1 Kommentar
  1. zur abschlus Frage 2,16 cm

    Von Lancelot Mls, vor 4 Tagen