40%

Cyber Monday-Angebot – nur bis zum 4.12.2022

sofatutor 30 Tage lang kostenlos testen & dann 40 % sparen!

Das allgemeine Induktionsgesetz

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 1 Bewertungen

Die Autor*innen
Avatar
Team Digital
Das allgemeine Induktionsgesetz
lernst du in der Oberstufe 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse

Grundlagen zum Thema Das allgemeine Induktionsgesetz

Inhalt

Nach dem Schauen dieses Videos wirst du in der Lage sein zu erklären, wie sich das Induktionsgesetz in seiner allgemeinen Form zusammensetzt und welche Informationen es beinhaltet.

Zunächst lernst du, welche physikalischen Größen das Induktionsgesätz enthält und was diese bedeuten.

das allgemeine Induktionsgesetz

Anschließend wird am Beispiel der Leiterschleife im Magnetfeld betrachtet, wie sich die einzelnen Größen verändern und so auf die Induktionsspannung auswirken können.

Leiterschleife im Magnetfeld

Abschließend erfährst du, welche unterschiedlichen Formen des Induktionsgesetzes sich aus der allgemeinen Form ableiten lassen.

Lerne etwas über die Verabschiedung von Formeln und Gesetzen im Physik-Parlament.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Induktion, Induktionsgesetz, Induktionsspannung, Magnetfeld, magnetisches Feld, magnetischer Fluss, magnetische Flussdichte, Flussänderung, magnetische Feldlinien, Spule, Leiterschleife, Windungen und effektive Querschnittsfläche.

Bevor du dieses Video schaust, solltest du bereits wissen, was Induktion ist und wie eine Induktionsspannung zu Stande kommt. Außerdem solltest du grundlegendes Wissen zum magnetischen Feld und dem magnetischem Fluss haben.

Nach diesem Video wirst du darauf vorbereitet sein, mehr über Induktion in konkreten Bauelementen zu lernen und die Bedeutung der Lenzschen Regel zu erfahren.

Das Induktionsgesetz



Induktionsgesetz – Entdeckung

Das Induktionsgesetz wurde in den 1830er-Jahren vom englischen Forscher Michael Faraday entdeckt. Faraday wusste damals schon, dass man mithilfe einer stromdurchflossenen Spule ein Magnetfeld erzeugen kann. Wir können uns dieses Phänomen folgendermaßen vorstellen:

Magnetische Induktion einer Leiterschleife

Ein elektrischer Leiter wird mit $N$ Windungen in Form einer Spule aufgewickelt und an eine Spannungsquelle angeschlossen. Diese liefert die Spannung $U$, wodurch wiederum ein Strom der Stärke $I$ durch den Leiter fließt. Der Strom erzeugt ein aus konzentrischen Kreisen bestehendes Magnetfeld um jedes Teilstück des Leiters, die alle zusammen den magnetischen Fluss $\phi$ durch die Spule ergeben. Dieses Phänomen war Faraday also bereits bekannt.

Elektromagnetische Induktion

Faraday nahm an, dass man dieses Phänomen auch umkehren, also durch einen magnetischen Fluss eine Spannung erzeugen kann. Er bewies diese Annahme durch ein einfaches Experiment:

Induktionsgesetz Physik

Wir stellen uns wieder eine Spule mit $N$ Windungen vor. Allerdings schließen wir dieses Mal keine Spannungsquelle, sondern ein Spannungsmessgerät an und bewegen einen Permanentmagneten in die Spule. Solange der Magnet in Bewegung ist, können wir eine Spannung $U_i$ am Messgerät ablesen – wir haben also durch Magnetismus Elektrizität erzeugt. Diesen Vorgang nennt man elektromagnetische Induktion.

Elektromagnetische Induktion – physikalische Ursachen

Der Grund für die Induktion einer Spannung ist, dass sich durch die Bewegung des Magneten die Anzahl der magnetischen Feldlinien ändert, die die Spule durchsetzen. Die damit verbundene Änderung der magnetischen Flussdichte induziert in der Spule eine Spannung. Das Induktionsgesetz lautet also, einfach erklärt:

Ändert sich die Anzahl der magnetischen Feldlinien, die eine Spule durchsetzen, so wird in der Spule eine Spannung $U_i$ induziert. Die Spannung $U_i$ nennt man auch Induktionsspannung.

Aber wie lautet das Induktionsgesetz genau, wenn wir es mathematisch beschreiben wollen?

Induktionsgesetz — Herleitung

Induktionsgesetz — Einflussfaktoren

Faraday machte eine Reihe von Experimenten, um herauszufinden, wovon genau die induzierte Spannung bei einer Spule abhängt. Er fand dabei eine Reihe von Einflussfaktoren:

  • die Stärke der Flussänderung
  • die Geschwindigkeit der Flussänderung
  • die Windungszahl der Spule
  • die Querschnittsfläche der Spule

Induktionsgesetz — Erklärung

Er führte alle seine Beobachtungen zusammen und entwickelte so das faradaysche Induktionsgesetz, mit dem man die Induktionsspannung einer Spule berechnen kann. Eine allgemeine mathematische Formulierung des Induktionsgesetzes ist die folgende Formel:

$U_i = -N \frac{\text{d} \phi}{\text{dt}}$

Manchmal wird diese Formel auch allgemeines Induktionsgesetz genannt. Mit $N$ bezeichnen wir die Windungszahl der Spule. Der Term $\frac{\text{d} \phi}{\text{dt}}$ beschreibt die zeitliche Änderung des magnetischen Flusses. Hier sehen wir direkt, dass die induzierte Spannung umso größer ist, je mehr Windungen die Änderung der magnetischen Flussdichte sehen. Außerdem sorgt eine stärkere Flussänderung für eine größere Induktionsspannung. Der magnetische Fluss im Induktionsgesetz hat folgende Definition:

$\phi = \int_A \vec{B} \cdot \text{d} \vec{A} $

Er ist also gleich dem Integral der magnetischen Flussdichte $\vec{B}$ über die eingeschlossene Fläche $A$. Im Induktionsgesetz steht die zeitliche Ableitung von $\phi$, also die zeitliche Änderung des magnetischen Flusses. Sie enthält also die Stärke der Flussänderung, die Geschwindigkeit der Änderung und die eingeschlossene Fläche $A$, die in diesem Fall der Querschnittsfläche der Spule entspricht. Da alle Faktoren positiv eingehen, können wir ihren Einfluss auch direkt ablesen.

Induktionsgesetz — Interpretation

Je größer die Querschnittsfläche, die Windungszahl, die Flussänderung oder die Geschwindigkeit der Flussänderung ist, desto größer ist auch die induzierte Spannung $U_i$. Aber weshalb erhalten wir eine Spannung mit negativem Vorzeichen? Das hat seinen Ursprung in der lenzschen Regel, die mit der Energieerhaltung zusammenhängt. Was das genau bedeutet, erfährst du im Video zur lenzschen Regel.

Induktionsgesetz — Beispiele

Es gibt sehr viele Beispiele für die technische Anwendung des Induktionsgesetzes. Die meisten Generatoren, die durch mechanische Energie eine Induktionsspannung erzeugen, basieren auf dem Prinzip der magnetischen Induktion. Das reicht vom Dynamo an deinem Fahrrad bis hin zu Generatoren in Windturbinen. Es findet außerdem auch in Mikrofonen Anwendung, in denen die mechanische Schwingung einer Membran in ein elektrisches Spannungssignal umgewandelt werden muss.

Induktionsgesetz – Zusammenfassung

Was ist eine Induktionsspannung? Und wie entsteht eine Induktionsspannung und welche Ursachen gibt es für die elektromagnetische Induktion? Diese und mehr Fragen werden dir in diesem Video einfach erklärt. Du lernst auch die wichtigsten Definitionen und Formeln zum Thema Induktion kennen.



Induktionsgesetz — Aufgaben

Du kannst jetzt direkt überprüfen, ob du alles verstanden hast. Neben Video und Text findest du interaktive Aufgaben zum Induktionsgesetz. Viel Spaß!

Transkript Das allgemeine Induktionsgesetz

Gravitationsgesetz, Bewegungsgesetze, Gesetz der Energieerhaltung wer schreibt einem das alles vor? Gibt's da ein Parlament, das nach ewigen Debatten über Definitionen und Formeln entscheidet? Klingt unnötig, schließlich wird es doch sowieso niemand schaffen, gegen auch nur ein einziges Gesetz der Physik zu verstoßen. So auch beim „Induktionsgesetz“ in seiner allgemeinen Form, um das es in diesem Video geht. Wie alle Gesetze der Physik dient das „Induktionsgesetz“ dem Zweck, ein physikalisches Phänomen zu beschreiben, um dessen Auswirkungen in verschiedensten Situationen möglichst genau berechnen zu können. „Induktion“ ist das Phänomen, dass in einem leitfähigen Körper eine Spannung hervorgerufen, also „induziert“ wird, wenn sich der ihn durchdringende „magnetische Fluss“ ändert. In fast allen elektrischen Geräten spielt Induktion eine mal kleinere und mal größere Rolle. Sowohl jeder „Stromgenerator“ als auch jeder „Elektromotor“ funktioniert über Induktion. Auch Datenübertragung und Funk wären ohne Induktion nicht möglich. Zur Konstruktion solcher Geräte reicht es aber nicht, das Phänomen der Induktion erklären zu können – man muss die Auswirkungen exakt berechnen. Dazu dient die allgemeine mathematische Form des Induktionsgesetzes, und die sieht so aus. Jetzt schauen wir uns mal an, welche Informationen da drin stecken. „U-i“ ist die Induktionsspannung. Das ist die interessanteste Größe – die wollen wir in der Regel berechnen. Sie wird hervorgerufen durch eine Änderung des magnetischen Flusses „Phi“. Die Änderung wird über einen bestimmten Zeitabschnitt beobachtet und deshalb als Differential „d-Phi durch d-T“ ausgedrückt.
Das bedeutet, dass der Zeitabschnitt auch beliebig klein werden kann. Eine etwas grobere, aber ebenso korrekte Darstellung wäre „Delta-Phi durch Delta-T“. Das Minuszeichen drückt aus, dass die induzierte Spannung immer ihrer Ursache entgegenwirkt – dazu aber mehr in einem anderen Video. Das „N“ weist darauf hin, dass die Induktion in einem elektrisch leitfähigen Körper stattfindet, der eine Fläche umschließt. So wie das einfachste induktionsfähige Bauteil – die Spule. Sie ist nichts anderes als ein aufgewickelter Draht mit „N“ Windungen. Eine Spule mit der Windungszahl „N gleich 1“ ist eine sogenannte „Leiterschleife“. Bei der „Leiterschleife im Magnetfeld“ bleiben wir mal, um uns genauer anzusehen, was nun hinter der Flussänderung „Delta-Phi“ steckt. Der magnetische Fluss setzt sich aus zwei Größen zusammen: Der magnetischen Flussdichte „B“, die die Dichte der Feldlinien und damit die Stärke des Magnetfeldes beschreibt, und der Fläche „A“, in der das Magnetfeld seine Wirkung auf den Körper entfaltet. Damit ist die Querschnittsfläche der Spule gemeint oder eben die Fläche, die von der Leiterschleife umschlossen wird – denn das ist der für die Induktion relevante Bereich. In diesem Beispiel können „B“ und „A“ einfach multipliziert werden und es folgt: Je größer die Flussdichte „B“ ist, desto größer wird auch der magnetische Fluss „Phi“ sein. Der Zusammenhang ist allerdings nur so simpel, wenn das magnetische Feld „homogen“ ist, also alle Feldlinien parallel verlaufen. Davon wird in der Schule eigentlich immer ausgegangen. Außerdem gilt: Je größer die vom Magnetfeld durchsetzte Fläche „A“, desto größer der Fluss. Damit eine Änderung des magnetischen Flusses – und damit die Induktion einer Spannung – stattfindet, muss sich nun entweder die Stärke des Magnetfeldes oder die Größe der durchsetzten Fläche der Leiterschleife ändern. Jetzt denkst du vielleicht: Wie soll sich die Fläche denn ändern? Ich verbiege doch nicht meine Leiterschleife! Aber die „effektive Querschnittsfläche“, also der Teil, der vom Magnetfeld durchsetzt wird, ändert sich schon, wenn zum Beispiel die Leiterschleife bewegt wird. Eine Flussänderung findet dann statt, wenn die Leiterschleife in das Magnetfeld eintritt, oder dieses verlässt. Bewegt sie sich innerhalb des Magnetfeldes, gibt es keine Flussänderung, weil sich die effektive Querschnittsfläche dabei nicht ändert. Es gibt aber auch die Möglichkeit, dass sich die effektive Querschnittsfläche ändert, wenn sich die Leiterschleife im Magnetfeld dreht. Induktion findet nämlich immer nur senkrecht zu den Magnetfeldlinien statt. Das heißt, wenn die Leiterschleife Schräg zum Magnetfeld steht, wird die durchsetzte Fläche, die zur Induktion beiträgt, kleiner. Wächst der Winkel „Klein-phi“, der die Abweichung von der senkrechten Ausrichtung bezeichnet, schrumpft demnach die effektive Querschnittsfläche. Bei „Klein-phi gleich Neunzig Grad“ stehen Leiterschleife und Magnetfeld parallel zueinander – die durchsetzte Fläche ist „gleich Null“. Dieser Zusammenhang wird mit dem Kosinus von Phi in die Formel des magnetischen Flusses eingebracht, denn der Kosinus ist bei null Grad genau „Eins“ und nimmt bei neunzig Grad den Wert „Null“ an, wodurch die „effektive Fläche“ entsprechend berücksichtigt wird. Und jetzt können wir die Formel für den magnetischen Fluss in das Induktionsgesetz einsetzen. Die „zeitliche Änderung“ kann sich nun je nach Vorgang auf die „magnetische Flussdichte“, die „Größe der durchsetzten Fläche“, oder den „Winkel zwischen Fläche und Magnetfeld“ beziehen. Das heißt, eine Spannung wird dann induziert, wenn wir die Stärke des Magnetfeldes ändern, oder sich die effektive Querschnittsfläche durch Heraus- oder Hineinbewegen, oder eine Drehung bezüglich des Magnetfeldes ändert. Durch „Delta-T“ wird berücksichtigt, wie schnell die jeweilige Änderung stattfindet. Fassen wir zusammen: Eine Induktionsspannung tritt auf, wenn sich der magnetische Fluss um einen elektrisch leitenden Körper ändert. Das Induktionsgesetz beschreibt den Zusammenhang zwischen induzierter Spannung und Flussänderung. Eine Flussänderung kann durch eine zeitliche Änderung der „magnetischen Flussdichte“, der „Querschnittsfläche“, oder des „Winkels“ zwischen Körper und Magnetfeld erfolgen. Das allgemeine Induktionsgesetz beinhaltet all diese Fälle und kann so das Verhalten vieler elektrischer Geräte beschreiben. Welche Flussänderung vorliegt, muss im Einzelnen betrachtet werden, aber eins ist sicher: das Induktionsgesetz ist kurz und unstrittig, und damit ganz anders, als so manche Parlamentsdebatte.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.062

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.281

Lernvideos

42.389

Übungen

37.454

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden