Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Aceton

Aceton ist das einfachste Keton, bestehend aus zwei Methylgruppen und einer Carbonylgruppe. Als farblose Flüssigkeit mit süßlichem Geruch wird es als Lösungs- und Extraktionsmittel genutzt. Erfahre mehr über die Struktur und Verwendung von Aceton! Interessiert? Das und vieles mehr findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 4 Bewertungen
Die Autor*innen
Avatar
André Otto
Aceton
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Aceton Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Aceton kannst du es wiederholen und üben.
  • Gib zu jeder Darstellung des Acetonmoleküls die entsprechende Bezeichnung an.

    Tipps

    Versuche zunächst, die Begriffe in zwei Gruppen einzuteilen, so wie auch die Bilder in zwei Gruppen eingeteilt sind: in dreidimensionale Moleküldarstellungen und in schematische Lewis-Formeln.

    Lass dich nicht verwirren; einige Begriffe sind frei erfunden.

    Lösung

    Strukturformel

    Die ausführlichste Darstellung des Acetonmoleküls in Lewis-Schreibweise ist die Strukturformel, auch ausführliche Strukturformel genannt. Sie wird vor allem dann verwendet, wenn alle Bindungen im Molekül dargestellt werden sollen und die Moleküle nicht zu groß sind.

    Halbstrukturformel

    Die erste verkürzte Schreibweise wird Halbstrukturformel genannt. Sie ist sozusagen nur noch „halb“ so ausführlich. Hier wird nicht mehr jede einzelne Bindung dargestellt. So werden beispielsweise im Acetonmolekül die Methylgruppen nur noch als $-CH_3$ abgekürzt, um die wesentliche Ketogruppe stärker hervorzuheben. Der Begriff Halbstrukturformel ist nicht ganz präzise definiert; er liegt irgendwo zwischen ausführlicher Strukturformel und Summenformel.

    Skelettformel

    Die minimalistischste unter den Strukturformeln ist die Skelettformel. Dargestellt werden hier nur noch Bindungen sowie Symbole für chemische Elemente, die nicht Kohlenstoff oder Wasserstoff heißen. Kohlenstoffatome befinden sich immer an den Ecken der Striche und Wasserstoffatome sind an jedem Kohlenstoffatom schließlich so viele gebunden, wie noch bis zur Vierbindigkeit fehlen. Die Anzahl der Wasserstoffatome für jedes Kohlenstoffatom kann man also immer eindeutig aus den Skelettformeln berechnen (4 minus Anzahl der Bindungen).

    Summenformel

    Die Summenformel fasst die Strukturformel kompakt zusammen, liefert allerdings keinerlei Information mehr über die Struktur. Es werden lediglich die Atomsorten mit Symbolen aufgeführt sowie als Index die Anzahl der jeweiligen Atome einer Atomsorte im Molekül.

    Kalottenmodell

    Das Kalottenmodell ist ein dreidimensionales Molekülmodell, in dem die Atome in einem Molekül in ihren wahren Größenverhältnissen zueinander dargestellt werden. Weiterhin ist der Abstand der Atome zueinander realistisch dargestellt. Bei größeren Molekülen wird dies schnell unübersichtlich und man hat sich mit einer weiteren Darstellung beholfen: dem Kugel-Stab-Modell.

    Kugel-Stab-Modell

    Im Kugel-Stab-Modell sind die Größenverhältnisse der Atome eines Moleküls ebenfalls korrekt dargestellt. Man könnte diese Darstellungsform als Mischtyp zwischen Kalottenmodell und Strukturformel bezeichnen, weil hier zusätzlich zur dreidimensionalen Darstellung die Bindungen eingezeichnet werden. Damit stimmen die Atomabstände nicht mehr mit den realen Abständen überein, aber die Lesbarkeit des Molekülmodells ist wesentlich besser.

  • Beschreibe Eigenschaften und Verwendung von Aceton.

    Tipps

    Aceton ist ein polares Molekül.

    Lösung

    Die Struktur eines Moleküls ist verantwortlich für die Eigenschaften. Aceton ist ein polares Molekül durch die Carbonylgruppe $-CO$. Der Siedepunkt liegt daher höher als bei unpolaren Molekülen mit vergleichbaren Massen. Durch die Polarität lässt sich auch die Mischbarkeit mit dem polaren Lösungsmittel Wasser erklären. Allerdings lässt es sich auch gut mit organischen Lösungsmitteln mischen und löst viele Verbindungen, wie Klebstoffe oder auch Fette.

    Sind die Eigenschaften einer Verbindung bekannt, lassen sich daraus auch die Anwendungen ableiten. Da Aceton sehr gute Eigenschaften als Lösungsmittel aufweist, wird es zum Lösen von Klebstoffen oder als Nagellackentferner verwendet.

  • Bestimme diejenigen Moleküle, die mindestens eine Ketogruppe enthalten.

    Tipps

    Schau dir das Strukturmerkmal der Ketogruppe noch einmal genau an. Es ist wichtig zu wissen, welche Bindungen das Kohlenstoffatom der Ketogruppe eingeht, um zu entscheiden, ob es sich tatsächlich um eine Ketogruppe handelt.

    Lösung

    Die funktionelle Gruppe $-CO$ bezeichnet man im Allgemeinen als Carbonylgruppe. Sind am Kohlenstoffatom der Carbonylgruppe jeweils Kohlenstoffatome gebunden, so nennt man die funktionelle Gruppe auch Ketogruppe. Befindet sich die Carbonylgruppe an einem endständigen Kohlenstoffatom, besitzt sie also nur eine Bindung zu einem weiteren Kohlenstoffatom, spricht man von einer Aldehydgruppe. Das erste Molekül enthält demzufolge eine solche Aldehydgruppe. Man könnte sich nun fragen, warum Molekül 6 keine Ketogruppe enhält. Die Antwort ist einfach: Eine der beiden Bindungen des Kohlenstoffatoms der CO-Bindung geht zu einer OH-Gruppe und ist somit weder Keto- noch Aldehydgruppe, sondern bildet eine eigenständige funktionelle Gruppe: die Carboxygruppe.

  • Bestimme, anhand welcher physikalischen Eigenschaften man Aceton erkennen kann.

    Tipps

    Ethanol befindet sich als wässrige Lösung in jeder Spirituose, Aceton in manchen Nagellackentfernern und Essigsäure verdünnt in Wasser in jedem Essig.

    Lösung

    Farbe
    Alle drei Substanzen sind farblos. Dementsprechend ist es unmöglich, sie aufgrund dieser Eigenschaft zu unterscheiden.

    Geruch
    Es ist möglich, diese drei Substanzen aufgrund ihres charakteristischen Geruches voneinander zu unterscheiden. Essigsäure besitzt den typisch stechenden Essiggeruch. Ethanol riecht süßlich-frisch und eben nach Alkohol. Und Aceton riecht sehr penetrant nach Nagellackentferner bzw. organischem Lösungsmittel.

    Löslichkeit in Wasser
    Alle drei Substanzen lösen sich gut in Wasser. Dementsprechend ist eine Unterscheidung überhaupt nicht möglich, zumal auch Wasser eine farblose Flüssigkeit ist.

    Siedepunkt
    Die Siedepunkte von Aceton, Ethanol und Essigsäure liegen bei 56 °C, 78 °C und 112 °C. Man kann also die drei Substanzen in Bechergläser mit einem Thermometer geben und jeweils so lange erhitzen, bis eine starke Gasentwicklung (Phasenübergang zu gasförmig) auftritt. Aceton siedet am niedrigsten, weil es ein kleines Molekül mit nur einer schwachen polaren Bindung ist. Ethanol ist auch ein kleines Molekül, aber seine Hydroxy-Gruppe ist stärker polar als die funktionelle Gruppe des Acetons und das erhöht die intermolekulare Wechselwirkung zwischen den Ethanolmolekülen. Die Carboxygruppe der Essigsäure sorgt dafür, dass sich immer zwei Moleküle zusammenlagern, die insgesamt eine hohe Oberfläche ausbilden und somit durch van-der-Waals-Kräfte mit anderen Zwillingsmolekülen zusammenhalten.

  • Bestimme die Bestandteile, die man für ein Acetonmolekül benötigt.

    Tipps

    Das Acetonmolekül besteht aus einer funktionellen Gruppe und zweimal dem gleichen Kohlenwasserstoffrest.

    Lösung

    Das Acetonmolekül ist aufgebaut aus der Keto-Gruppe $-CO$, an deren Kohlenstoffatom jeweils eine Methylgruppe $-CH_3$ gebunden ist. Das Molekül enthält somit drei Kohlenstoffatome. Es ist das einfachste Keton und heißt mit systematischem Namen Propanon.

  • Sortiere die angegebenen Moleküle aufsteigend nach ihrem Siedepunkt.

    Tipps

    Die Moleküle einer Substanz, die erst bei hohen Temperaturen siedet, bilden stärkere Bindungen zwischen einander aus als die Moleküle einer Substanz, die bereits bei niedrigen Temperaturen siedet.

    Polare Moleküle haben höhere Siedepunkte als vergleichbare unpolare Moleküle, weil die gegenseitige Anziehungskraft höher ist.

    Der Siedepunkt nimmt mit zunehmender Größe des Moleküls auch zu.

    Der Elektronegativitätsunterschied zwischen Kohlenstoff und Wasserstoff ist zu gering, als dass man dabei von polarer Bindung sprechen könnte. Moleküle, die nur aus den Elementen C und H bestehen, sind daher unpolar.

    Butan findet Verwendung als Feuerzeuggas und Aceton ist eine leicht verdampfbare Flüssigkeit, die im Labor zur Reinigung von Glasgeräten genutzt wird.

    Lösung

    Was ist eigentlich die Siedetemperatur?
    Zunächst muss eine Möglichkeit gefunden werden, die Siedetemperatur auf der Teilchenebene zu deuten: Sie ist ein Maß für die Stärke der elektrischen Anziehungskraft zwischen den gleichartigen Molekülen einer Substanz. Je stärker die Anziehungskraft, desto höher die Siedetemperatur, da mehr Energie benötigt wird, um die Moleküle voneinander zu trennen, also in den gasförmigen Zustand zu überführen.

    Was bindet die Moleküle aneinander?
    Die Moleküle bilden zwischenmolekulare Bindungen aus, weil eine positive Ladung in einem Teil eines Moleküls von einer negativen Ladung aus einem anderen Teil eines anderen Moleküls angezogen wird. Am stärksten sind diese Anziehungskräfte bei polaren Molekülen, weil positive und negative Ladungsschwerpunkte dauerhaft im Molekül vorhanden sind. So ist Wasser nur deshalb bei Raumtemperatur flüssig, weil das Sauerstoffatom die Bindungselektronen viel stärker zu sich zieht als die Wasserstoffatome. Es entsteht eine negative Partialladung am Sauerstoffatom eines jeden Wassermoleküls und eine positive an den Wasserstoffatomen. Jedes Wassermolekül ist als positiv und negativ zugleich geladen und somit entsteht ein großes Netz an Wassermolekülen, die sich gegenseitig anziehen.

    Aber auch unpolare Moleküle ziehen sich gegenseitig an. Denn auch hier gibt es positive und negative Ladungsschwerpunkte. Diese entstehen allerdings durch die Bewegung der Elektronen um den Kern zufällig und sind nicht von langer Dauer. Die Bindungen zwischen unpolaren Molekülen sind demzufolge viel schwächer als die zwischen polaren. Allerdings können große unpolare Moleküle trotzdem gut einander binden, da es viel Kontaktfläche zwischen ihnen gibt und immer wieder neue zufällige Ladungsschwerpunkte entstehen.

    Die unpolaren Moleküle
    Das Methanmolekül $CH_4$ ist das kleinste aller Moleküle und hat dementsprechend wenig Oberfläche, an der sich van-der-Waals-Bindungen ausbilden können. Es siedet bei - 161 °C.

    Das Butanmolekül $C_4H_{10}$ kann man sich beinahe vorstellen wie vier aneinander gebundene Methanmoleküle. Entsprechend ist die Oberfläche für van-der-Waals-Kräfte viel größer und Butan siedet erst bei viel höheren Temperaturen, nämlich - 1 °C.

    Die polaren Moleküle
    Das Acetonmolekül $C_3H_6O$ ist zwar von der Moleküloberfläche ähnlich dem Butan, aber es weist darüber hinaus eine polare Carbonylgruppe $CO-$ auf. Dies sorgt für einen positiven und einen negativen Ladungsschwerpunkt im Molekül, der wiederum die Anziehungskraft zwischen den Acetonmolekülen erhöht. Der Siedepunkt liegt, wie oben bereits angegeben, bei 56 °C.

    Das 3-Pentanonmolekül $C_5H_{10}O$ hat wie das Acetonmolekül eine Carbonylgruppe $CO-$. Es weist allerdings eine größere Oberfläche auf als Aceton. Dementsprechend sind die van-der-Waals-Wechselwirkungen größer und die Siedetemperatur ist die höchste der vier Substanzen mit 101 °C.