Zusammensetzung und Zerlegung von Kräften

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Zusammensetzung und Zerlegung von Kräften
Ein Kräfteparallelogramm zeichnen
Jakob hat sich eine Hängematte gekauft und möchte sie zwischen zwei Bäumen aufhängen. Bevor er sich die Arbeit macht, sie zwischen die Bäume zu hängen, überprüft er, ob die Seile sein Gewicht auch halten können. Dazu hängt er die Hängematte einfach gerade an einen Ast – die Seile halten sicher. Als er die Hängematte jedoch anschließend zwischen zwei Bäume hängt und sich freudig in die Hängematte legt, reißt ein Seil.
Hat er einen Fehler gemacht? Die Seile hatten ihn doch vorher gehalten? Um herauszufinden, weshalb die Hängematte dieses Mal nicht gehalten hat, beschäftigen wir uns im Folgenden mit Kräfteparallelogrammen.
Was ist ein Kräfteparallelogramm?
Bevor wir ein Kräfteparallelogramm zeichnen können, müssen wir verstehen, was dieser Begriff überhaupt bedeutet. Was eine Kraft in der Physik ist, weißt du schon. Außerdem weißt du auch, dass man Kräfte mithilfe von Vektorpfeilen darstellen kann. Denn sie haben eine Richtung und eine Stärke, die der Länge des Pfeils entspricht.
Wir stellen uns nun folgende Situation vor: Ein großes Frachtschiff soll in einen Hafen gezogen werden. Dazu ziehen zwei kleinere Schiffe mit den Kräften $\vec{F}_{1}$ und $\vec{F}_{2}$ am Bug des Frachtschiffs. Da es gefährlich ist, wenn sich die Schlepper zu nahe kommen, ziehen sie jeweils schräg nach vorne. Die Kräfte zeichnen wir mithilfe von Vektorpfeilen ein.
In der Abbildung sehen wir, dass die zwei Schlepper in unterschiedliche Richtungen an dem Frachtschiff ziehen. Allerdings gibt es eine resultierende Kraft, manchmal auch nur als Resultierende bezeichnet, die sich aus den einzelnen Kräften der Schlepperboote ergibt. Das liegt daran, dass die Kraft eine gerichtete Größe ist. Immer, wenn zwei Kräfte an demselben Punkt angreifen, kann man sie durch eine resultierende Gesamtkraft ersetzen.
Uns interessiert nun, welche Stärke und Richtung diese Resultierende hat. Und um das herauszufinden, nutzen wir das Kräfteparallelogramm. Um es zu zeichnen, wenden wir die Parallelverschiebung an. Wir zeichnen zu jedem der beiden Kraftpfeile eine parallel verschobene Linie von der Spitze des jeweils anderen Kraftpfeils aus. Auf diese Weise entsteht ein Parallelogramm. Die resultierende Kraft $\vec{F}_R$ können wir einzeichnen, indem wir einen Pfeil vom Angriffspunkt der beiden Einzelkräfte zum Schnittpunkt der parallel verschobenen Linien zeichnen.
Das Schiff wird also nach vorne gezogen. Der Kraftpfeil der Resultierenden ist außerdem länger als die einzelnen Pfeile, aber kleiner als deren Summe. Wir können auch erkennen, dass die Länge der Resultierenden von dem eingeschlossenen Winkel abhängt. Je spitzer der Winkel ist, desto länger wird der resultierende Kraftpfeil. Beträgt der Winkel $0^{\circ}$, ist die Resultierende genauso lang wie die Summe der einzelnen Pfeile. Allerdings wäre das – wie wir schon festgestellt haben – zu gefährlich für die Schlepper.
Kräfteparallelogramm – Beispiele
Wir können mithilfe des Kräfteparallelogramms grundsätzlich jede beliebige Kombination von Kräften berechnen. Wir betrachten im Folgenden aber zwei spezielle Beispiele.
Beispiel 1: Gestreckter Winkel
Wir stellen uns vor, die beiden Schlepper aus der Erklärung würden nicht an einem Frachtschiff, sondern aneinander in unterschiedliche Richtungen ziehen. Dann beträgt der Winkel zwischen den Kräften $180^{\circ}$ und wir können kein Parallelogramm durch Parallelverschiebung zeichnen. Die resultierende Kraft können wir trotzdem ermitteln. Dazu müssen wir die beiden einzelnen Kraftpfeile einfach direkt übereinanderschieben. Steht ein Pfeil über, gibt das überstehende Ende Länge und Richtung der resultierenden Kraft vor.
Sind beide Pfeile gleich lang, steht keiner der beiden Pfeile über und die resultierende Kraft ist gleich null. Das ist genau wie beim Tauziehen: Wenn beide Teams gleich stark sind, bewegt sich das Seil nicht.
Beispiel 2: Die Hängematte
Kommen wir auf die Hängematte aus der Einleitung zurück. Wir wissen immer noch nicht, wieso die Seile gerissen sind. Jetzt haben wir allerdings das Werkzeug, um dieses Rätsel zu lösen! Wir können das Kräfteparallelogramm benutzen.
Zu Beginn hing die Hängematte an einem Ast. In vertikale Richtung, also nach unten, zeigt die Gewichtskraft $\vec{F}_G$ von Jakob. Weil in diesem Fall die Seile beide (näherungsweise) gerade nach oben zeigen, verteilt sich die Gewichtskraft gleichmäßig auf beide Seilstücke – für jedes Seilstück kann ein Kraftpfeil gezeichnet werden, der halb so lang ist wie der Kraftpfeil von Jakob.
Jetzt betrachten wir die Situation in der Hängematte. Auch für dieses Beispiel können wir ein Kräfteparallelogramm zeichnen. Allerdings ist hier die Vorgehensweise etwas anders, denn wir kennen die resultierende Kraft, die Gewichtskraft $\vec{F}_G$, und müssen die an den Seilen wirkenden Kräfte bestimmen. Wir zeichnen zunächst einen Kraftpfeil für Jakobs Gewichtskraft nach unten. Das ist die Resultierende. Dann verlängern wir in gerader Linie die beiden Seilenden und verschieben sie dann jeweils parallel, sodass sie an der Pfeilspitze der Gewichtskraft vorbeilaufen. So entsteht ein Parallelogramm aus den parallel verschobenen Linien. Die Kräfte $\vec{F}_1$ und $\vec{F}_2$, die auf die Seile wirken, erhalten wir, indem wir je einen Pfeil vom Angriffspunkt zu den Ecken des Parallelogramms zeichnen.
Die Kräfte $\vec{F}_1$ und $\vec{F}_2$ sind jeweils größer als die Gewichtskraft von Jakob. Das Seil ist also gerissen, weil die Kraft zu groß wurde. Die Seile einer Hängematte müssen also mehr Kraft aushalten, als die Gewichtskraft der Person, die auf ihr sitzt. Je größer der Winkel zwischen den Seilen ist, desto größer wird die benötigte Kraft. Das liegt daran, dass die Seile immer mehr in die falsche Richtung ziehen. Weil die Kraftpfeile der beiden Seile immer den Kraftpfeil der Gewichtskraft ergeben müssen, werden sie länger, je größer der Winkel wird. Du kannst das selbst aufzeichnen. Dann siehst du, dass die Pfeile schnell nicht mehr auf dein Blatt passen.
Kurze Zusammenfassung zur Zusammensetzung und Zerlegung von Kräften
In diesem Video lernst du, was ein Kräfteparallelogramm ist und wie man es zeichnet. Außerdem lernst du, Kräfte mithilfe der Parallelverschiebung zu zerlegen. Neben Text und Video findest du zum Thema Kräfteparallelogramm auch Aufgaben, mit denen du gleich üben kannst.

Kraft und ihre Wirkung

Zusammensetzung und Zerlegung von Kräften

Das hookesche Gesetz

Kraftmessung

Kraftarten

Ortsfaktor

Federkraft

Entgegengesetzt gerichtete Kräfte

Reibung – Warum Glatteis so rutschig ist

Reibungskräfte

Reibung

Newton und die Schwerkraft – es war einmal Forscher und Erfinder (Folge 10)
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Transistor
- Drehmoment
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Hookesches Gesetz und Federkraft
- elektrische Stromstärke
- elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, UV-Strahlung, Infrarot UV Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Trigonometrische Funktionen
- Lichtjahr
- SI-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, akustischer Dopplereffekt
- Kernspaltung