Wellenoptik – Polarisation

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Wellenoptik – Polarisation
Die Polarisation von Licht
Als Polarisation von Licht bezeichnet man in der Physik die Richtung der Schwingung des elektrischen Feldes der Lichtwelle. Was das genau bedeutet, wie polarisiertes Licht erzeugt werden kann und wo es Anwendung findet, wollen wir im Folgenden klären. Dazu solltest du schon wissen, dass man Licht als elektromagnetische Welle beschreiben kann und deren Eigenschaften kennen.
Was ist die Polarisation von Licht?
Wir wissen bereits, dass wir Licht als elektromagnetische Transversalwelle beschreiben können. Transversalwelle bedeutet, dass die Schwingung senkrecht zur Ausbreitungsrichtung erfolgt. Im Falle von Licht schwingen elektrische und magnetische Felder senkrecht zur Ausbreitungsrichtung und senkrecht zueinander.
Die Polarisation bezieht sich in der Regel auf das elektrische Feld des Lichts. Da das magnetische Feld immer senkrecht auf dem elektrischen steht, reicht das Wissen über das elektrische aus, um die Polarisationseigenschaften von Licht vollständig zu beschreiben. Das elektrische Feld wird durch den elektrischen Feldvektor $\vec{E}$ beschrieben.
Als Schwingungsrichtung oder auch Schwingungsebene bezeichnet man die Ebene, in der der elektrische Feldvektor schwingt. In der Beispielillustration breitet sich die Welle in
Mit der Polarisation beschreibt man die Ausrichtung dieser Schwingungsebene, da diese gerade durch die Schwingungsrichtung des elektrischen Feldes gegeben ist. Je nach Eigenschaften des Lichts werden verschiedene Polarisationszustände unterschieden: unpolarisiertes Licht, linear polarisiertes Licht und zirkular polarisiertes Licht.
Was ist unpolarisiertes Licht?
Licht, das von thermischen Quellen wie zum Beispiel einer Kerze oder einer Glühlampe emittiert wird, ist unpolarisiert. Das bedeutet, dass sich das Licht aus Einzelwellen zusammensetzt, die voneinander unabhängige Schwingungsrichtungen aufweisen. Diese Richtungen sind zufällig verteilt und überlagern sich. In unpolarisiertem Licht kommt in der Regel also jede beliebige Schwingungsrichtung vor.
Was ist linear polarisiertes Licht?
In linear polarisiertem Licht schwingen alle Einzelwellen in dieselbe Richtung. Die Schwingungsebene kann dabei horizontal, vertikal oder in jedem beliebigen Winkel verlaufen, wobei die Schwingung nach wie vor senkrecht zur Ausbreitungsrichtung erfolgt.
Was ist zirkular polarisiertes Licht?
Wenn linear polarisierte Wellen unter bestimmten Bedingungen überlagert werden oder besondere Bauteile durchqueren, ergibt sich zirkular polarisiertes Licht. In diesem besonderen Fall dreht sich die Schwingungsebene periodisch im Kreis. In der Natur kommt diese Form der Polarisation allerdings nur sehr selten vor.
Wie kann Licht polarisiert werden?
Eine Möglichkeit, unpolarisiertes Licht zu polarisieren, ist die Verwendung von Polarisationsfiltern. Solche Polfilter bestehen aus speziellen Folien, die auf bestimmte Weise gestreckt werden. Auf diese Weise richten sich innerhalb der Folie Molekülketten parallel zueinander aus.
Wenn nun Licht, also ein elektrisches Feld, auf die Folie trifft, kann es abhängig von seiner Schwingungsrichtung gut oder schlecht absorbiert werden:
Schwingt das elektrische Feld in Richtung der Molekülketten, kann es Elektronen innerhalb der Ketten zum Schwingen anregen und wird daher absorbiert. Es wird also durch den Filter blockiert. Schwingt das Feld hingegen senkrecht zu den Molekülketten, kann es keine Schwingungen anregen und wird dementsprechend vollständig durchgelassen. Für alle anderen Winkel zwischen $0^\circ$ und $90^\circ$ wird das Licht geschwächt und nur der zu den Molekülketten senkrechte Anteil wird vom Filter durchgelassen.
Auf diese Weise ist das Licht hinter dem Polarisationsfilter senkrecht zu der Ausrichtung der Molekülketten polarisiert. So kann man einerseits aus unpolarisiertem Licht linear polarisiertes Licht erzeugen, oder aber auch bereits polarisiertes Licht blockieren.
Neben Experimenten in der Wissenschaft kommen solche Polarisationsfilter auch in der Fotografie zum Einsatz. Warum das so ist, sehen wir im nächsten Abschnitt.
Ist Sonnenlicht polarisiert?
Das Licht, das von der Sonne ausgeht, ist zunächst unpolarisiert. Allerdings kann Licht nicht nur durch Polarisationsfilter polarisiert werden, sondern auch bei Reflexion, Streuung und Brechung. Bei diesen Vorgängen wird das Licht in der Regel zwar nicht vollständig polarisiert, aber je nach Bedingungen zu einem großen Anteil. Das passiert beispielsweise bei der Streuung des Sonnenlichts in der Atmosphäre. So ist das Licht am Himmel abhängig von der relativen Position der Sonne unterschiedlich polarisiert. Das nutzen einige Insekten aus: Bienen können beispielsweise die Polarisation von Licht wahrnehmen. So können sie genau feststellen, in welcher Himmelsrichtung sich die Sonne befindet, ohne die Sonne selbst zu sehen.
Aber auch bei der Reflexion an Wasser, metallischen Oberflächen oder Glas wird Licht teilweise polarisiert. Deswegen gibt es spezielle Polarisationsfilter für Kameras. Je nachdem, in welchem Winkel man sie einstellt, kann man Reflexionen herausfiltern oder besonders hervorstechen lassen.
Polarisation – Zusammenfassung
Hier findest du die wichtigsten Stichpunkte zum Thema Polarisation von Licht:
- Als Polarisation von Licht bezeichnet man die Richtung der Schwingung des elektrischen Feldes.
- Es gibt unpolarisiertes Licht, linear polarisiertes Licht und zirkular polarisiertes Licht.
- Bei unpolarisiertem Licht schwingt das elektrische Feld zufällig in allen möglichen Raumrichtungen.
- Bei linear polarisiertem Licht schwingt das elektrische Feld in einer Vorzugsebene.
- Bei zirkular polarisiertem Licht beschreibt der elektrische Feldvektor einen Kreis.
- Polarisiertes Licht kann zum Beispiel durch die Verwendung von Polarisationsfiltern oder Reflexion und Brechung erzeugt werden.
- Anwendungsbeispiele für Polarisationsfilter sind Experimente in der Wissenschaft oder die Fotografie.
Auch zu diesem Video gibt es interaktive Übungen und ein Arbeitsblatt – du kannst dein neu gewonnenes Wissen zum Thema Polarisation also direkt testen!
Transkript Wellenoptik – Polarisation
Licht besteht aus elektromagnetischen Schwingungen. Diese Schwingungen erfolgen bei natürlichen Lichtstrahlen in allen Richtungen des Raumes. Lässt man jedoch den Lichtstrahl durch einen speziellen Filter fallen, so wird lediglich eine Schwingungsebene hindurch gelassen. Derartiges Licht mit nur einer ausgezeichneten Schwingungsebene nennt man polarisiertes Licht. Viele Insekten können übrigens polarisiertes Licht nach seiner Polarisationsrichtung unterscheiden. Sie können das sogar nutzen, um sich zu orientieren. Polarisiertes Licht lässt sich zum Beispiel durch einen Kalkspat-Kristall erzeugen. Blicken wir hindurch, erscheint die dahinterliegende Schrift doppelt. Mit einem Polfilter kann man regulieren, welches Licht mit welcher Schwingungsebene durchgelassen wird. So kann man Spiegelungen auf glänzenden Flächen vermindern. Dadurch verbessert sich der Kontrast bei Fotos oder Filmaufnahmen. Und gute Sonnenbrillen haben auch polarisierende Gläser. Dann blenden uns die Lichtwellen nicht mehr so sehr und wir können die Sonne genießen.

Intensität von Licht – Zeigerformalismus und Interferenz

Intensität von Licht – Zeigerformalismus und optische Abbildungen

Intensität von Licht – Zeigerformalismus und Beugung am schmalen Spalt

Intensität von Licht – Zeigerformalismus und Interferenz am Mehrfachspalt

Wellenoptik – Geschichte der Wellentheorie

Wellenoptik – Eigenschaften von Wellen

Wellenoptik – Doppelspaltversuch

Wellenoptik – elektromagnetisches Spektrum

Wellenoptik – Farben

Wellenoptik – Beugungsmuster

Wellenoptik – Polarisation
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Transistor
- Drehmoment
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Hookesches Gesetz und Federkraft
- elektrische Stromstärke
- elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'sches Gesetz
- Freier Fall
- Kernkraftwerk
- Atom
- Aggregatzustände
- Infrarot, UV-Strahlung, Infrarot UV Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Trigonometrische Funktionen
- Lichtjahr
- SI-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, akustischer Dopplereffekt
- Kernspaltung