Absorptions- und Emissionsversuche

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Absorptions- und Emissionsversuche
In diesem Video wollen wir uns mit Absorptions- und Emissionsversuchen beschäftigen, also mit Experimenten, in denen Strahlung von Materie (meistens Gasen) aufgenommen bzw. abgegeben wird. Wir schauen uns am Beispiel von Wasserstoffgas an, Licht welchen Spektrums ausgesandt wird, wenn man dem Gas Energie zuführt. Danach widmen wir uns einem Absorptionsversuch und untersuchen, welche Teile des Lichtspektrums vom Wasserstoffgas absorbiert werden. Zu Guter Letzt lernst du kennen, was man unter Resonanzabsorption versteht.
Transkript Absorptions- und Emissionsversuche
Hallo und herzlich willkommen zu Physik mit Kalle! Wir beschäftigen uns heute aus der Atom- und Kernphysik mit Absorptions- und Emissionsversuchen. Für dieses Video solltet ihr euch bereits ein wenig mit dem Burschen Atommodell auskennen. Wir lernen heute, was quantenhafte Absorption und Emission ist. Dann sehen wir uns ein paar Absorptions- und Emissionsversuche an. Und zum Schluss lernen wir, was Resonanzabsorption ist. Wir hatten die beiden ja schon in den 2 letzten Videos über den Franck-Hertz-Versuch und die Balmer-Formel kennengelernt. Deswegen fassen wir sie jetzt nur noch einmal kurz zusammen. Quantenhafte Emission bedeutet, dass Atome nur Photonen bestimmter Wellenlänge (also Energiewerte) aussenden; diese sind für den Atomtyp charakteristisch. Quantenhafte Absorption bedeutet, dass Atome auch nur Photonen bestimmter Wellenlänge aufnehmen; und auch diese sind für den Atomtyp charakteristisch. Soweit, so gut. Welche Versuche man damit machen kann und welche Spektren man damit erhält, das sehen wir uns im nächsten Kapitel an. Wir fangen mal an mit dem Versuch, mit dem Balmer die Wasserstoffserien-Formel entdeckte. Wir nehmen also eine Wasserstoff-Gasentladungsröhre und schließen eine Spannung an. Die Röhre leuchtet. Durch eine Blende und eine Linse bündeln wir einen Lichtstrahl auf ein Gitter. Am Beugungsgitter wird das Licht nun in die Spektralfarben des Wasserstoffes aufgefächert. Wir erhalten das uns bekannte Spektrum des Wasserstoffs. Durch die in der Gasentladungsröhre stattfindende quantenhafte Emission erhalten wir also ein Emissionsspektrum. Wir machen noch einen 2. Versuch. Diesmal benutzen wir keine Gasentladungsröhre, sondern einfach eine Glühlampe. Wir wir wissen, sendet eine Glühlampe weißes Licht, also Licht aller Spektralfarben, aus. Wir benutzen wieder eine Blende und eine Linse, um einen Lichtstrahl zu bündeln und auf ein Gitter zu schicken. Das Gitter fächert das Licht wieder in seine Spektralfarben auf. Wir erhalten also auf dem Schirm einen Regenbogen. Das ist ja nun noch nichts Neues. Deswegen erweitern wir das Experiment noch ein wenig. Wir nehmen die Gasentladungsröhre von eben, schließen aber keine Spannung an, sodass sie nicht leuchtet, und stellen sie einfach zwischen Linse und Gitter, sodass unser gebündelter Lichtstrahl durch sie hindurch muss. Was wir nun beobachten können, ist: Die Gasentladungsröhre beginnt schwach zu leuchten. Dafür beobachten wir aber in unserem Regenbogen auf dem Schirm, dass sich einige Stellen schwarz färben, sogenannte Absorptionslinien. Und wenn wir das mit unserem Spektrum von oben vergleichen, dann stellen wir fest: Die Farben, die in unserem Regenbogen fehlen, sind exakt die 4 Linien aus dem Emissionsspektrum. Der Grund dafür ist, dass das Gas in unserer Röhre genau diese 4 Linien absorbieren kann und dann wieder als Licht abgibt; allerdings nicht in die gleiche Richtung, wie der gebündelte Lichtstrahl, sondern zufällig in alle möglichen Richtungen. Deshalb fehlen diese Farben im Regenbogen und erscheinen dort als schwarze Linien. Dies ist also, wie beim Franck-Hertz-Versuch, ein Phänomen der quantenhaften Absorption, und es führt zu einem sogenannten Absorptionsspektrum. Was wir daraus nun für Schlussfolgerungen ziehen können, das sehen wir uns im letzten Kapitel an. Wir wollen dazu noch schnell einen letzten Versuch machen. Wir beginnen wieder mit einer Wasserstoff-Gasentladungslampe. Wir führen wieder mit Blende und Linse einen Lichtstrahl auf ein Gitter, und auf unserem Schirm erscheint das uns schon bekannte Emissionsspektrum. Wir bringen nun wieder eine Glasröhre, die nicht an Spannung angeschlossen ist, in unseren Lichtstrahl. Allerdings füllen wir sie diesmal mit Natriumdampf. Wir beobachten: Das Natrium beginnt nicht zu leuchten. Und das ist eigentlich auch ganz einleuchtend. Ein Atom kann nämlich nur einen Energiebetrag absorbieren, den es auch emittieren könnte. Im Bohrschen Atommodell bedeutet das: Das Elektron springt zwischen 2 Bahnen hin und her. Um auf die höhere zu kommen, braucht es Energie, um wieder herunterzukommen, muss es welche abgeben. Diese beiden Energiebeträge müssen natürlich gleich sein. Im vorherigen Versuch hat die Wasserstoffröhre aus dem weißen Licht genau die 4 Farben absorbiert, die es auch emittieren kann. Da die Natriumröhre, die im sichtbaren Bereich 2 sehr nahe beieinanderliegende gelbe Linien hat, von diesen 4 Farben nichts aufnehmen kann, beginnt sie auch nicht zu leuchten. Zum Schluss wollen wir noch kurz aufschreiben, was Resonanzabsorption ist. Den Vorgang, durch den unsere Wasserstoffröhre im vorherigen Versuch zu leuchten begann, nennt man Resonanzabsorption. Ein Atom wird durch Absorption eines Photons angeregt, kehrt wieder in den ursprünglichen Zustand zurück und sendet ein Photon der gleichen Energie wieder aus. Wegen der Resonanzabsorption leuchten also zum Beispiel alle Gasentladungsröhren. Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Quantenhafte Emission bzw. Absorption bedeutet: Ein Atom kann nur einige bestimmte Energiewerte aussenden bzw. aufnehmen; diese Werte sind für den Atomtyp charakteristisch und für Emission und Absorption gleich. Das bedeutet, die hellen Linien im Emissionsspektrum eines Gases sind an den gleichen Stellen, wie die dunklen Linien im Absorptionsspektrum des Gases. Unter Resonanzabsorption versteht man: Ein Atom wird durch Absorption eines Photons angeregt und kehrt dann, unter Aussendung eines Photons gleicher Wellenlänge, wieder in den vorherigen Zustand zurück. So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, Euer Kalle
Absorptions- und Emissionsversuche Übung
-
Beschreibe die Begriffe quantenhafte Emission und quantenhafte Absorption.
-
Beschreibe den Weg des Lichts in dem Versuch von Balmer.
-
Vergleiche Emissions- und Absorptionsspektren verschiedener Stoffe.
-
Beschreibe die zu erwartende Beobachtung bei dem Versuch zur Resonanzabsorption.
-
Beschreibe die Beobachtungen bei dem Emissionsversuch.
-
Bestimme die Wellenlänge des bei der Fluoreszenz emittierten Photons.
9.226
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.663
Lernvideos
37.087
Übungen
32.336
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt
Oink!
Vielen vielen Dank für diese wirklich guten Videos. Ich habe mich durch deine Videos in der Physikklausur von 3 Punkten auf 12 Punkte verbessert! Danke!
Mega gutes Video. Sehr anschaulich und verständlich erklärt.
@Mariella Vonderwense
Wir sind uns des Problems bewusst und arbeiten an einer Neustrukturierung der Themenbereiche. Die Änderungen wurden zum Teil schon umgesetzt. Dieser Themenbereich wird auch zeitnah umstrukturiert. Das Problem sollte sich also bald lösen.
Wollte mal sagen, dass ich eure Videos grundsätzlich für sehr verständlich und informativ halte!! Aber an der Strukturierung der Videos in den Themenbereichen könnte man nochmal arbeiten. Zum Beispiel steht diese Video in dem Themenbereich "Einführung in die Atomphysik". Hier werden jedoch Videos vorausgesetzt, die in einem der darauffolgenden Themenbereiche liegen. Da kommt man manchmal ein bisschen durcheinander..
Ansonsten finde ich die Videos zum Lernen fürs Abi sehr hilfreich!!