Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Schwingung Federpendel

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 28 Bewertungen
Die Autor*innen
Avatar
Physik Siggi
Schwingung Federpendel
lernst du in der Oberstufe 5. Klasse - 6. Klasse - 7. Klasse

Schwingung Federpendel Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Schwingung Federpendel kannst du es wiederholen und üben.
  • Beschreibe eine Schwingung.

    Tipps

    Denke dabei an die Schaukel, wie sie sich bewegt und welche Eigenschaften sie hat.

    Lösung

    Wenn du auf einer Schaukel schaukelst, führst du eine Schwingung aus. Du musst Kraft aufwenden, um dich selbst in Bewegung zu versetzen. Danach bewegst du dich vor und zurück, wieder und wieder. Eine ähnliche Bewegung vollführt auch die Gitarre, wenn man sie anschlägt.

    Jede dieser Schwingungen ist eine zeitlich periodische Schwingung. Nach einer bestimmten Zeitspanne $T$ ist man wieder genau dort, wo man gestartet ist, und der Ablauf, die Periode, beginnt von neuem. Daher nennt man $T$ auch die Periodendauer.

  • Gib an, welche Informationen man aus dem Diagramm ziehen kann.

    Tipps

    Das Diagramm gibt Informationen über die Zeit und den Ort, also kann man daraus auch Größen ableiten, die nur mit dem Ort und der Zeit zu tun haben.

    Lösung

    Aus einem solchen Diagramm kann man eine ganze Menge Informationen ziehen. Einige sind direkt ablesbar, wie der Auslenkort, die Amplitude, die Schwingungsdauer.

    Andere kann man aber berechnen, wie die Frequenz, die ist $f=\dfrac{1}{T}$. Man bekommt sie also mithilfe der Schwingungsdauer T.

    Die Kraft kann man dort nicht ablesen, denn es fehlt die Masse. (Diese kann also auch nicht ablesen.).

  • Beschreibe die gedämpfte Schwingung.

    Tipps

    In der Realität ist fast jede Schwingung gedämpft. Überlege dir, wie sich die Größen z.B. bei einem Pendel verhalten, wenn du es lange schwingen lässt.

    Lösung

    Die gedämpfte Schwingung ist ein bestimmter Fall unter den harmonischen Schwingungen. Sie zeichnet sich dadurch aus, dass ihre Amplitude kleiner wird.
    Das passiert dann durch z.B. Reibung.

    Die Periodendauer bleibt dabei gleich.

    Das wünschen wir uns vor allem bei einem Erdbeben, dem Stoßdämpfer im Auto und auch bei Lärm. Sonst würde ein Erdbeben immer weitergehen, das Auto nur noch herumhobeln und es niemals mehr leise werden.

    Unerwünscht ist die Dämpfung aber beim Schaukeln und beim (Uhr)Pendel. Deswegen müssen wir immer die Schaukelbewegung machen oder brauchen jemanden, der uns anstößt. Auch müssen wir deswegen immer die Uhren wieder aufziehen.

  • Berechne die Masse, die an der Feder hängt.

    Tipps

    Du brauchst die Formel für die Schwingungsdauer.

    Die Formel für die Schwingungsdauer ist: $T=2\pi\sqrt{\dfrac{m}{D}}$.

    Lösung

    Wir haben hier einen Fall, der durchaus einmal vorkommen kann: Wir haben keine Waage, sondern nur eine Feder. Ein Lineal haben wir leider auch nicht, aber die Schwingungsdauer zu bestimmen funktioniert auch mit dem Auge und einer Uhr ganz gut.

    Deshalb kennen wir $T=2~s$ und, weil wir die Feder selbst gekauft haben, auch die Federkonstante $D=8~\dfrac{N}{m}$.

    Dann nehmen wir uns die passende Formel: $T=2\pi\sqrt{\dfrac{m}{D}}$. Das ist die Formel für die Schwingungsdauer des Federpendels, da steckt alles drin, was wir brauchen.

    $T=2\pi\sqrt{\dfrac{m}{D}}$ stellen wir also nach m um.
    Dazu quadrieren wir alles, damit die Wurzel verschwindet. Dann können wir mal D und geteilt durch $4\pi^2$ rechnen, um auf die Masse zu kommen.

    $m=\dfrac{T^2\cdot D}{4\pi^2}=0,81~kg$

  • Nenne periodische Vorgänge.

    Tipps

    Eine periodische Bewegung ist eine Schwingung, also eine sich zeitlich wiederholende Bewegung.

    Lösung

    Viele Bewegungen in der Physik sind periodisch, aber was bedeutet periodisch?

    Periodisch bedeutet: sich regelmäßig wiederholend. Es geht also um etwas, das sich immer wieder wiederholt.

    Das Mädchen auf der Schaukel schaukelt vor, zurück und wieder vor, dann ist es da, wo es am Anfang war, und alles beginnt von vorn, immer und immer wieder.
    Ihre Bewegung ist also periodisch.

    Bei der Pendeluhr und der Gitarrensaite ist es genauso, sie schwingen hin und zurück, immer gleich.

    Nur die Sanduhr tut das nicht, sie läuft einmal durch und wiederholt ihre Bewegung nicht.

  • Berechne, wie weit die Feder ausgelenkt wird.

    Tipps

    Benutze für $g$ den Wert $9,81~\dfrac{m}{s^2}$.

    Du brauchst die Gleichung $F_R=D\cdot x$. Die Kraft $F_R$ bekommst du durch die Gewichtskraft.

    Lösung

    Diese Aufgabe ist typisch für den Physikunterricht. Man hat eine Feder. An diese hängt man ein Gewicht und man möchte natürlich vorher wissen, wie sehr sich die Feder dadurch verlängert.

    Das ist auch bei vielen Maschinen mit Federn wichtig.

    Dazu brauchen wir zwei Formeln: $F_R=D\cdot x$ und $F_g=m\cdot g$.

    Da beide die Kraft F beschreiben, können wir sie gleichsetzen. Streng genommen wirkt $F_g$ nach unten und $F_R$ nach oben, aber wenn die Feder sich nicht mehr bewegt, sind sie gleich groß.

    $m\cdot g=D\cdot x$ stellen wir jetzt nach der Auslenkung $x$ um:

    $x=\dfrac{m\cdot g}{D}$.

    Jetzt noch alles einsetzen und wir sind fast fertig:

    $x=\dfrac{0,1~kg\cdot 9,81~\dfrac{m}{s^2}}{4,5~\dfrac{N}{m}}=0,218~m$

    $0,218~m=0,218~m \cdot 100~\dfrac{cm}{m}=21,8~cm \approx 22 ~cm$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.264

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.466

Lernvideos

35.632

Übungen

33.169

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden