30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lichtbrechung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen in nur 12 Minuten?
  • Lucy lernt 5 Minuten 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

  • Lucy übt 5 Minuten 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

  • Lucy stellt fragen 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 4.4 / 28 Bewertungen

Die Autor*innen
Avatar
Team Digital
Lichtbrechung
lernst du in der Unterstufe 2. Klasse - 3. Klasse - 4. Klasse - Oberstufe 5. Klasse

Grundlagen zum Thema Lichtbrechung

Inhalt

Nach dem Schauen dieses Videos wirst du in der Lage sein, das Phänomen der Lichtbrechung zu beschreiben.

Lichtbrechung

Zunächst lernst du, wie Licht an einer optischen Grenzfläche gebrochen wird. Anschließend wird die Umkehrbarkeit des Lichts und ihr Einfluss auf die Brechung genauer betrachtet. Abschließend lernst du, wie und warum unsere Wahrnehmung durch die Brechung des Lichts verzerrt wird.

Schützenfisch

Lerne etwas über den Schützenfisch und wie er auf Beutejagd geht.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Lichtbrechung, Reflexion, optisches Medium, optische Grenzfläche, optische Dichte, Einfallswinkel und Brechungswinkel.

Bevor du dieses Video schaust, solltest du bereits wissen, wie sich Licht im Raum ausbreitet und dass es an einer Grenzfläche sowohl reflektiert als auch durchgelassen werden kann.

Nach diesem Video wirst du darauf vorbereitet sein, das Brechungsgesetz und die Definition des Brechungsindex zu lernen.

Ausbreitung von Licht im Strahlenmodell

Das Strahlenmodell ist ein Hilfsmittel, mit dem wir die Ausbreitung von Licht beschreiben können. In diesem Modell stellen wir uns vor, dass sich Licht immer in Form von geraden Strahlen im Raum ausbreitet. Stell dir zum Beispiel eine Glühbirne vor: Wenn sie eingeschaltet ist, sendet sie Strahlen aus. Und wenn diese Strahlen unsere Augen treffen, sehen wir die Lichtquelle. Wenn die Lichtstrahlen vorher ein Objekt treffen, zum Beispiel einen Apfel, werden sie von diesem Objekt in alle Richtungen gestreut. Auch das gestreute Licht können wir als gerade Strahlen beschreiben. Treffen einige davon unsere Augen, dann sehen wir das Objekt, in diesem Fall den Apfel.

Strahlenmodell der Lichausbreitung

Die Lichtstrahlen sind dabei umkehrbar. Das heißt Folgendes: Wenn wir Glühbirne und Auge vertauschen, müssen wir einfach nur die Pfeile an den Strahlen umdrehen. Alles andere bleibt genau gleich.

Lichtbrechung

Was versteht man unter Lichtbrechung?

In unserem Beispiel zur Ausbreitung von Licht im Strahlenmodell waren die Strahlen die ganze Zeit über in Luft, also immer im gleichen Medium. Wir wollen uns jetzt anschauen, was passiert, wenn wir zwei unterschiedliche Medien betrachten. Als Beispiel nehmen wir Wasser und Luft. Dazu stellen wir uns einfach ein Gefäß mit Wasser oder einen stillen See vor. Von oben scheint die Sonne und die Strahlen treffen auf die Wasseroberfläche.

Lichtreflektion an einer Grenzfläche

An der Grenzfläche zwischen Luft und Wasser passieren jetzt zwei Dinge: Zum einen wird ein Teil des Strahls reflektiert, und zwar nach dem Reflexionsgesetz. Das kennst du vielleicht schon: Es besagt, dass Einfallswinkel $\alpha$ und der Ausfallswinkel gleich groß sind und zum Lot hin gemessen werden. Das Lot ist die Linie, die senkrecht zur Grenzfläche ist.
Zusätzlich zu der Reflexion wird ein Teil des Strahls abgelenkt. Er dringt in das Wasser ein, ändert aber dabei seine Richtung. Das nennt man Brechung des Lichts. Beim Übergang von Luft zu Wasser ist der Winkel $\beta$ zwischen gebrochenem Strahl und Lot kleiner als der Winkel zwischen dem einfallenden Strahl und Lot. Der Strahl wird zum Lot hin gebrochen. Das liegt daran, dass Wasser optisch dichter ist als Luft.

Lichtbrechung in der Physik

Ein Maß für die optische Dichte ist der Brechungsindex. Wir können also auch einfach die Brechungsindizes $n_1$ und $n_2$ der Materialien miteinander vergleichen. Wenn Licht von einem Medium 1 in ein Medium 2 läuft und außerdem gilt, dass $n_1 < n_2$, wird das Licht zum Lot hin gebrochen. Außerdem gilt, dass die Brechung umso stärker ist, je stärker sich die Brechungsindizes voneinander unterscheiden.

Wie stark die Lichtstrahlen gebrochen werden, hängt nicht nur von dem Verhältnis der Brechungsindizes ab, sondern auch vom Einfallswinkel. Je kleiner der Einfallswinkel ist, desto schwächer wird der Strahl gebrochen. Am kleinsten ist er bei senkrechtem Einfall, dann ist er nämlich gleich $0$°. Dann wird der Strahl gar nicht gebrochen.

Wie sieht es nun aus, wenn die Strahlen von einem optisch dichteren in ein optisch dünneres Medium laufen, zum Beispiel von Wasser in Luft? Erinnerst du dich daran, dass wir gesagt hatten, dass man die Richtung der Strahlen umkehren kann? Wir müssen uns also gar kein neues Beispiel ausdenken, sondern einfach nur die Richtung umdrehen. So sehen wir sofort, dass in diesem Fall die Strahlen vom Lot weg gebrochen werden. Also: Wenn Lichtstrahlen von einem optisch dichteren in ein optisch dünneres Medium laufen, werden sie vom Lot weg gebrochen. Oder, mithilfe des Brechungsindex ausgedrückt: Wenn Licht von einem Medium 2 in ein Medium 1 läuft und außerdem gilt, dass $n_2 > n_1$, wird das Licht vom Lot weg gebrochen.

Lichtbrechung in der Physik

Lichtbrechung – Beispiele

Wir wollen uns zum Schluss noch ein paar Beispiele anschauen, die du vielleicht aus deinem Alltag kennst. Hast du zum Beispiel schon einmal versucht, ein Objekt unter Wasser zu greifen? Dabei passiert es häufig, dass man beim ersten Mal danebengreift. Und das hat mit der Lichtbrechung zu tun. Das Sonnenlicht, das vom Objekt gestreut wird, wird an der Grenze zwischen Wasser und Luft gebrochen. Das gilt natürlich auch für die Strahlen, die unser Auge treffen. Unser Gehirn ist es aber gewohnt, dass Licht immer in geraden Strahlen verläuft und ohne Brechung unsere Augen erreicht, und verlängert den Strahl einfach in gerader Linie. Deswegen sehen wir das Objekt nicht da, wo es eigentlich ist, sondern ein Stückchen daneben.

Lichtbrechung in der Natur

Manche Tiere versuchen instinktiv, dieses Problem zu umgehen. Schützenfische essen am liebsten Insekten. Um ihre Leibspeise zu fangen, spritzen sie mit ihrem Maul einen Wasserstrahl in die Luft, um sie abzuschießen. Natürlich sorgt die Lichtbrechung hier für das gleiche Problem, das wir eben beschrieben haben. Der Schützenfisch weiß zwar nicht so viel über Lichtbrechung wie du, aber umgeht instinktiv das Problem. Er versucht immer, senkrecht unter das Insekt zu schwimmen. So minimiert er die Lichtbrechung und trifft sicher seine Beute.

Transkript Lichtbrechung

Der Schützenfisch ist ein Meister der Physik. Nicht nur, dass er bis zu zwei Meter weit spucken kann und so seine Beute abschießt, er ist dabei auch sehr treffsicher. Und das, obwohl das Zielen durch einen physikalischen Effekt besonders erschwert wird: die „Lichtbrechung“. Das ist dir bestimmt schonmal aufgefallen: Wenn du etwas ins Wasser tauchst oder selbst im Wasser sitzt, sieht der Teil unter Wasser etwas verschoben aus, je nachdem, aus welcher Richtung man von außen draufblickt. Das liegt daran, dass sich der Weg des Lichts verändert, wenn es durch das Wasser hindurch muss. An der Wasseroberfläche wird das Licht optisch gebrochen, was man gut an einem geraden Strohhalm in einem Wasserglas beobachten kann. Das funktioniert so: Wenn Licht auf eine Wasseroberfläche trifft, wird ein Teil davon reflektiert, und ein Teil geht hindurch. Die Wasseroberfläche bildet eine Grenzfläche zwischen einem „optisch dünneren Medium“, der „Luft“, und einem „optisch dichteren Medium“, dem „Wasser“. Beim Übergang verändert sich die Ausbreitungsrichtung des Lichts, denn es ist für das Licht schwerer, das „optisch dichtere Medium“, also das Wasser, zu durchdringen. Der Lichtstrahl knickt deshalb ab – er wird gebrochen. Wenn wir ein Lot auf die Grenzfläche zeichnen, wo das „einfallende“ Licht auftrifft, können wir zwischen dem „Einfallswinkel Alpha“ und dem „Brechungswinkel Beta“ unterscheiden. Das Licht wird „zum Lot hin gebrochen“, wenn der Übergang vom „optisch dünneren“ zum „optisch dichteren Medium“ stattfindet. In dem Fall ist „Beta“ kleiner als „Alpha“. Allerdings wächst auch „Beta“, wenn „Alpha“ größer wird. Der Brechungseffekt ist umso größer, je schräger das Licht einfällt. Und es gibt keine Brechung, wenn das Licht senkrecht auf die Grenzfläche trifft. Das Licht könnte aber auch den umgekehrten Weg gehen, zum Beispiel wenn sich im Boden eines Schwimmbads eine Lampe befindet. Das Licht wird dann genauso an der Grenzfläche zwischen Wasser und Luft gebrochen, allerdings findet aus dieser Perspektive der Übergang vom „optisch dichteren Medium“ ins „optisch dünneren Medium“ statt. Der Einfallswinkel „Alpha“ ist dann kleiner als der Brechungswinkel „Beta“, und das Licht wird „vom Lot weg“ gebrochen. Der Weg des Lichts ist in diesem Sinne umkehrbar: Wenn man Objekt und Betrachter vertauscht, ändern sich nur die Bezeichnungen, nicht aber der Verlauf der Lichtstrahlen. Aber wie beeinflusst die Lichtbrechung nun unsere Wahrnehmung? Wenn wir einen Fisch im Wasser fangen wollen, ist das gar nicht so leicht, denn das Licht, das vom Fisch reflektiert wird, wird auf dem Weg zu unserem Auge an der Wasseroberfläche gebrochen. Das Gehirn geht allerdings davon aus, dass das Licht immer einen geraden Weg nimmt, also auch an der Grenzfläche in gerader Linie weiter verläuft. Deshalb nehmen wir die Situation so wahr, als ob der Fisch sich weiter oben befinden würde. Wenn wir nach diesem Fisch greifen, werden wir ganz sicher danebenlangen. Dazu muss der echte Fisch nicht mal wegschwimmen. Der Schützenfisch hat aus seiner Sicht dasselbe Problem, nur in umgekehrter Richtung. Was würdest du tun, wenn du der Schützenfisch wärst? Wie er das löst, erfährst du am Ende des Videos. Brechungseffekte gibt es nicht nur zwischen Luft und Wasser, sondern an jeder Grenzfläche zwischen zwei verschiedenen „optischen Medien“, und das umso stärker, wenn die Grenzfläche gekrümmt verläuft, wie zum Beispiel bei Glas, bei welligem Wasser oder sogar zwischen verschiedenen Luftschichten. Fassen wir zusammen: Wenn Licht von einem optisch dünneren in ein optisch dichteres Medium einfällt, wird es „zum Lot hin“ gebrochen. Auf umgekehrtem Weg wird das Licht „vom Lot weg“ gebrochen, Brechungs- und Einfallswinkel sind dann vertauscht. In beiden Fällen gilt, dass der Brechungswinkel umso größer wird, je größer der Einfallswinkel ist. Da unser Gehirn die Brechung des Lichts schlecht einschätzen kann, sehen wir Dinge verschoben, die sich in einem anderen optischen Medium - zum Beispiel in Wasser - befinden. Der schlaue Schützenfisch muss also die Brechung des Lichts exakt berechnen, wenn er seine Beute treffen möchte. Naja, oder er übt einfach ein bisschen und zielt immer ein Stück tiefer, als ihm seine Augen vorgaukeln.

3 Kommentare

3 Kommentare
  1. Sehr hilfreiches, gut erklärtes Video.

    Von M Hoffmann 4, vor etwa 17 Stunden
  2. Super Video

    Von Mel, vor etwa einem Monat
  3. Das Video ist voll gut. Mir gefällt das.

    Von Lennox, vor 2 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.583

sofaheld-Level

5.866

vorgefertigte
Vokabeln

10.216

Lernvideos

42.296

Übungen

37.370

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden