Über 1,2 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die Auftriebskraft

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Sei der Erste und gib eine Bewertung ab!
Die Autor*innen
Avatar
Team Digital
Die Auftriebskraft
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Die Auftriebskraft

Was ist die Auftriebskraft?

Hast du schon einmal ein riesiges Containerschiff gesehen? Dann hast du dich bestimmt gefragt, wie so ein riesiges Schiff überhaupt schwimmen kann. Der Grund dafür ist die sogenannte Auftriebskraft. Doch was ist die Auftriebskraft eigentlich und wie kann man sie berechnen?

Archimedisches Prinzip

Das Prinzip, das hinter der Auftriebskraft steckt, ist schon sehr lange bekannt. Es wurde zum ersten Mal vor über 2.000 Jahren von einem griechischen Gelehrten namens Archimedes formuliert. Deswegen nennt man es auch das archimedische Prinzip. Es besagt, dass die Auftriebskraft eines Körpers gerade so groß ist wie die Gewichtskraft des Mediums, das er verdrängt.

Auftriebskraft Formel

Für die Herleitung einer Formel für die Auftriebskraft, also den physikalischen Auftrieb, schauen wir uns die folgende Situation an:

Auftriebskraft Physik, Warum schwimmt ein Schiff?

Ein großes Schiff schwimmt auf dem Ozean. Aufgrund der Erdanziehung wirkt auf das Schiff eine Gewichtskraft, die es nach unten zieht. Da es nicht untergeht, muss eine Kraft wirken, die die Gewichtskraft des Schiffs gerade kompensiert. Beide Kräfte wirken in entgegengesetzte Richtungen, wie du im Bild sehen kannst.

Nach dem archimedischen Prinzip ist die Auftriebskraft gerade so groß wie die Gewichtskraft des verdrängten Wassers und diese können wir wiederum als Produkt aus der Masse des verdrängten Wassers und der Erdbeschleunigung $g$ schreiben, also:

$F_{Auftrieb} = m_{verdrängtes~Wasser} \cdot g = V_{verdrängt} \cdot \rho_{Wasser} \cdot g$

Im letzten Schritt der Gleichung haben wir außerdem ausgenutzt, dass die Masse des Wassers dem Produkt aus verdrängtem Volumen und Dichte entspricht. Wenn wir die Auftriebskraft in einem anderen Medium berechnen wollen, müssen wir natürlich auch die entsprechende Dichte dazu einsetzen.

Nun haben wir also auch eine Formel für die Auftriebskraft. Bisher haben wir einen schwimmenden Körper betrachtet. Insgesamt können aber drei Fälle auftreten, je nachdem wie sich Auftriebskraft und Gewichtskraft zueinander verhalten:

1. $F_{Auftrieb} \gt F_{Gewicht~Körper} \longrightarrow $ Der Körper steigt auf.

2. $F_{Auftrieb} = F_{Gewicht~Körper} \longrightarrow $ Der Körper schwimmt.

3. $F_{Auftrieb} \lt F_{Gewicht~Körper} \longrightarrow $ Der Körper sinkt.

Ist die Auftriebskraft größer als die Gewichtskraft, die auf den Körper wirkt, steigt der Körper auf. Das passiert zum Beispiel dann, wenn du einen mit Luft gefüllten Luftballon unter Wasser loslässt. Wenn Auftriebskraft und Gewichtskraft gleich sind, schwimmt der Körper. Und wenn die Auftriebskraft kleiner als die Gewichtskraft ist, geht der Körper unter.

Auftriebskraft – Beispiele:

Um das Verständnis der Auftriebskraft zu vertiefen, wollen wir gemeinsam ein paar Beispielrechnungen durchgehen.

Beispiel 1: Wie groß ist die Auftriebskraft für ein $100.000~\text{kg}$ schweres schwimmendes Schiff?

Da das Schiff schwimmt, wissen wir, dass der Auftrieb gerade die Gewichtskraft kompensiert – sonst würde es ja untergehen. Wir können also festhalten:

$F_{Auftrieb} = F_{Gewicht}$

Da wir die Masse des Schiffs und die Erdbeschleunigung $g$ kennen, können wir diese Werte zur Berechnung der Gewichtskraft einsetzen. So erhalten wir die Auftriebskraft:

$F_{Auftrieb} =m_{Schiff} \cdot g = 100.000~\text{kg} \cdot 10~\frac{\text{m}}{\text{s}^2} = 1.000.000~ \text{N}$

Im letzten Schritt haben wir für die Auftriebskraft noch die Definition für die Einheit Newton verwendet. Es ist also eine Auftriebskraft von $1~\text{Million}~\text{Newton}$ nötig, damit unser Schiff schwimmt. Das ist ganz schön viel!

Beispiel 2: Wie groß ist das Volumen des vom Schiff verdrängten Wassers?

Um das Volumen zu berechnen, nutzen wir das archimedische Prinzip. Wir schreiben die Gleichung noch einmal auf:

$F_{Auftrieb} = m_{verdrängtes~Wasser} \cdot g = V_{verdrängt} \cdot \rho_{Wasser} \cdot g$

Die Auftriebskraft haben wir schon im ersten Beispiel ausgerechnet. Sie beträgt genau $1.000.000$ N. Die Erdbeschleunigung $g$ kennen wir auch und die Dichte von Wasser können wir in einer Datenbank nachschlagen. Sie beträgt gerundet $1.000~\frac{\text{kg}}{\text{m}^3}$. Wir müssen also nur noch die Formel nach $V$ umstellen, indem wir durch $\rho_{Wasser}$ und $g$ teilen:

$F_{Auftrieb} = V_{verdrängt} \cdot \rho_{Wasser} \cdot g ~ | \, : (\rho_{Wasser} \cdot g)$

$\Longrightarrow V_{verdrängt} = \frac{F_{Auftrieb}}{(\rho_{Wasser} \cdot g)} $

Jetzt müssen wir nur noch alle Werte einsetzen, um das Volumen des verdrängten Wassers zu erhalten:

$V_{verdrängt} = \frac{1.000.000~\text{N}}{1.000~\frac{\text{kg}}{\text{m}^3} \cdot 10\frac{\text{m}}{\text{kg}}} = 100~\text{m}^3 $

Das Schiff verdrängt also $100~\text{Kubikmeter}$ Wasser.

Beispiel 3: Wir schwer muss eine ein Kubikmeter große Kiste sein, damit sie sinkt?

Wir bleiben auf dem Schiff und wollen messen, wie tief das Meer ist. Dazu müssen wir eine Kiste an einem Seil ins Wasser lassen, die bis auf den Meeresboden sinkt. An der Länge des Seils können wir dann die Tiefe ablesen.

Auftriebskraft einer Kiste unter Wasser nach dem Archimedischen Prinzip

Damit die Kiste untergeht, muss ihre Gewichtskraft größer sein als die Auftriebskraft. Das können wir als Gleichung aufschreiben:

$F_{Gewicht} > F_{Auftrieb}$

Wir setzen die Formel für die Gewichtskraft der Kiste ein und nutzen für die Auftriebskraft wieder das archimedische Prinzip. Dann formen wir nach der Masse der Kiste um, indem wir auf beiden Seiten durch $g$ teilen. Also:

$m_{Kiste} \cdot g > V_{verdrängt} \cdot \rho_{Wasser} \cdot g |:g $

$\Longrightarrow m_{Kiste} > V_{verdrängt} \cdot \rho_{Wasser}$

Jetzt müssen wir nur noch das Volumen der Kiste und die Dichte des Wassers einsetzen:

$m_{Kiste} > 1~\text{m}^3 \cdot 1.000~\frac{\text{kg}}{\text{m}^3} = 1.000~\text{kg}$

Die Kiste muss also $1.000~\text{Kilogramm}$ wiegen, damit sie bis auf den Meeresboden absinkt.

Auftriebskraft – Aufgaben

Du findest neben Video und Text interaktive Aufgaben, mit denen du weiterüben kannst.

Sind dir die Aufgaben zu leicht? Dann überleg doch mal, wie du die Auftriebskraft für einen Heißluftballon bestimmen kannst.