30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Nervenzelle – Bau und Funktion

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 4.1 / 19 Bewertungen

Die Autor*innen
Avatar
Team Digital
Nervenzelle – Bau und Funktion
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Nervenzelle – Bau und Funktion

Inhalt

Was ist eine Nervenzelle? – Biologie

Unser Körper besteht aus vielen verschiedenartigen Zellen mit bestimmten Funktionen. Nervenzellen (auch: Neuronen) unterscheiden sich von anderen Zellen insbesondere durch ihren Aufbau. Als Bestandteil unseres Nervensystems dienen sie der Weiterleitung von Nervensignalen und der Übertragung von Signalen an andere Nervenzellen, Muskel- oder Drüsenzellen.

Nervenzelle – Aufbau und Funktion

Nervenzellen bestehen aus einem Zellkörper, der auch als Soma bezeichnet wird, den Dendriten, dem Axon, bei Wirbeltieren umgeben häufig schwannsche Zellen mit ranvierschen Schnürringen die Axone und am Ende befinden sich die Synapsenendknöpfchen.

Wie sieht eine Nervenzelle aus?

Nervenzelle – Funktionen der einzelnen Bestandteile

Das Soma enthält einen Zellkern und Mitochondrien. Es ist somit für den Stoffwechsel der Zellen zuständig und versorgt sie mit Energie. Dendriten sind kurze, stark verästelte Fortsätze am vorderen Ende der Nervenzellen, über die diese die Signale von anderen Nervenzellen empfangen. Bei einem Axon handelt es sich um einen langen, unverzweigten Fortsatz, der der Weiterleitung der Signale durch den Körper dient. Von manchen Nervenzellen können die Axone bis zu einem Meter lang sein, etwa bei den Nervenzellen, die von den Füßen zum Rückenmark reichen. Bei Wirbeltieren werden die Axone häufig zudem von einer speziellen Form von Gliazellen, den sogenannten schwannschen Zellen, umgeben. Diese Zellen liegen hintereinander um das jeweilige Axon, sodass es von einer lamellenartigen Hülle umgeben wird: der Markscheide, Myelinscheide oder auch schwannschen Scheide. Die Markscheide ermöglicht eine schnellere Weiterleitung der Nervensignale. Zwischen den einzelnen schwannschen Zellen sind ranviersche Schnürringe erkennbar, an denen kurze Abschnitte des Axons frei liegen. Die Synapsenendknöpfchen, über die die Signale an andere Nervenzellen, Muskel- oder Drüsenzellen weitergeleitet werden, liegen am Ende des Axons.

Was ist eine Synapse?

Bau und Funktion einer Nervenzelle: Weiterleitung der Informationen

Über die synaptischen Endknöpfchen werden chemische Botenstoffe, die Neurotransmitter, freigesetzt. Neurotransmitter bewirken an den Dendriten der nachfolgenden Nervenzelle eine vorübergehende Öffnung von Ionenkanälen. Durch eine Wanderung der Ionen durch die postsynaptische Membran kommt es zu einer Änderung des Membranpotentials. Dieses Membranpotential ist die Information, die zum Soma weitergeleitet wird. Am Übergang zwischen Soma und Axon befindet sich der Axonhügel. Dort werden Informationen bzw. Signale in ein Aktionspotential umgewandelt, wenn ein gewisser Schwellenwert des Potentials überschritten wurde. Dieses Aktionspotenzial wird entlang der Axone immer weitergeleitet, ohne an Stärke zu verlieren. Ist also der Schwellenwert überschritten, erfolgt eine gleichbleibende Reaktion, die bei einem weiterhin erhöhten Potential nicht stärker ausfallen würde: Man spricht von einem Alles-oder-nichts-Prinzip. Wenn das Aktionspotential die Synapsen erreicht, kommt es zur Ausschüttung der Botenstoffe in den synaptischen Spalt. Die Neurotransmitter heften sich an Rezeptoren auf der postsynaptischen Membran einer jeweils nachgeschalteten Nerven-, Sinnes- oder Drüsenzelle oder Muskelfaser, wobei Neurotransmitter und Rezeptor zueinander passen wie ein Schlüssel zum Schloss (Schlüssel-Schloss-Prinzip). Die Bindung zwischen Botenstoff und Rezeptor löst erneut einen elektrischen Impuls aus, der beim erreichen des Schwellenwertes wieder am Axon entlangwandert und so über die Synapsen von Zelle zu Zelle weitergegeben wird, bis die Zielzellen erreicht sind: Es kommt zu einer Reaktion – wie zum Beispiel einer Kontraktion des Muskels.

Erregungsleitung in der Nervenzelle

Nervenzelle – Reaktion

Die Erregungsleitung erfolgt blitzschnell und kann eine Höchstgeschwindigkeit von bis zu etwa 150 m/s, also 540 km/h, erreichen. Nur so können wir Menschen auf viele Situationen so schnell und reflexartig reagieren. Beispiele wären so manche Situationen im Straßenverkehr: Beim Fahrradfahren kann es beispielsweise vorkommen, dass man plötzlich und unerwartet den Lenker herumreißt. Der Grund: Über die Augen wurde ein Reiz wahrgenommen, etwa das Erblicken eines Balls, der über den Fahrradweg rollt. Das Gehirn „weiß“, dass dieser Ball dort nicht hingehört und eventuell eine Gefahr bedeuten könnte. Blitzschnell wird die Information über die Nervenzellen – von den Augen über das Gehirn zu den Muskeln – weitergeleitet und führt dazu, dass die Muskeln der Arme den Lenker herumreißen.

Häufige Fragen zum Thema Nervenzellen

Vergleiche Struktur und Funktion von Neuronen und Gliazellen.
Erläutere den Transport von Stoffwechselprodukten durch das Axon.
Nenne die vier Abschnitte eines Neurons und ordne ihnen ihre Funktion zu.
Neuronen sind stark differenzierte Zellen mit einer besonderen Struktur. Vergleiche die Nervenzelle mit einer undifferenzierten Tierzelle und erläutere, inwiefern diese strukturellen Besonderheiten im Zusammenhang mit der Funktion der Neuronen als Empfänger und Verteiler von Informationen steht.
Wie ist eine Nervenzelle aufgebaut?
Beschreibe den Bau einer Nervenzelle und die Informationsübertragung von einer Nervenzelle zur nächsten Nervenzelle.
Was ist eine Nervenzelle?
Wie sieht eine Nervenzelle aus?
Wie entsteht in einer nicht erregten Nervenzelle ein Ruhepotential?
Wie groß ist eine Nervenzelle?
Wie werden Informationen innerhalb einer Nervenzelle weitergeleitet?
Aus was besteht eine Nervenzelle?
Wie funktioniert eine Nervenzelle?
Wie viele Transmitter kann eine Nervenzelle herstellen?
Warum kann man eine Nervenzelle mit einer Einbahnstraße vergleichen?
Wie lang ist eine Nervenzelle?
Wie kann man das Ruhepotential einer Nervenzelle bestimmen?
Wie viele Chromosomen hat eine Nervenzelle?
Wie viele Dendriten hat eine Nervenzelle?
Wie leitet eine Nervenzelle Impulse weiter?
Wie arbeitet eine Nervenzelle?
Wie viele Axone hat eine Nervenzelle?
Was unterscheidet eine Nervenzelle von anderen Zellen?
Welche Arten von Nervenzellen gibt es?
Wo steckt im Nerv die Nervenzelle?
Wo kommen unipolare Nervenzellen vor?
Was ist der Unterschied zwischen einer Nervenzelle und einem Nerv?
Wie entsteht eine Nervenzelle?
Wo entstehen neue Nervenzellen?
Was sind die besonderen Kennzeichen von Neuronen?
Was sind afferente Nervenfasern?
Was versteht man unter einem Neuron?
Wie werden Informationen zwischen Nervenzellen weitergegeben?
Wie nennt man die Verbindung der Nervenzellen?

Transkript Nervenzelle – Bau und Funktion

Ohoo, da wurde wohl jemand in die Nervzelle gesteckt. Das sieht ja ziemlich ungemütlich dort aus. Da beschäftigen wir uns lieber mit einer anderen. Heute schauen wir uns einmal die „Nervenzelle mit ihrem Bau und ihrer Funktion“ an. Nervenzellen oder auch „Neurone“, sind die kleinsten Bestandteile unseres Nervensystems. Sie sind für die Aufnahme und Weiterleitung von elektrischen Impulsen zuständig, was mit Spitzengeschwindigkeiten von bis zu hundert Metern pro Sekunde passieren kann. So können Nervenzellen mit anderen Nervenzellen oder auch mit Muskel- und Drüsenzellen kommunizieren. Sehen wir uns nun einmal den Aufbau einer typischen Nervenzelle genauer an. Ein bisschen erinnert die Form ja auch an ein Stromkabel. Grob kann man die Nervenzelle in zwei Teile gliedern, den „Zellkörper“ und das „Axon“. Der Zellkörper, auch „Soma“ oder „Perikaryon“ genannt, beherbergt den „Zellkern“ und alle anderen Zellorganellen, wie eine gewöhnliche Zelle. Ungewöhnlich sind wiederum die verzweigten Fortsätze am Zellkörper, die „Dendriten“. Über diese Dendriten kann die Nervenzelle mit anderen Nervenzellen in Kontakt treten, sie sind dabei für die Aufnahme von Nervensignalen zuständig und leiten diese zum Zellkörper weiter. Der lange Fortsatz, der an den Zellkörper anschließt, ist das „Axon“, das am „Axonhügel“, also am Übergang von Zellkörper zu Axon, entspringt und dessen Funktion die Weiterleitung des Signals ist. Beim Menschen kann ein Axon wenige Millimeter und bis zu einem Meter lang sein. Das ist bei dem Axon, das unsere große Zehe mit dem Rückenmark verbindet, der Fall. Das Axon ist meist mit „Hüllzellen“ umgeben, was für eine elektrische Isolierung sorgt. Die Hüllzellen, die übrigens nur bei Wirbeltieren vorkommen, reihen sich wie Perlen an einer Kette aneinander und werden durch kleine Schnürringe unterbrochen. Durch diese Schnürringe wird die Weiterleitung der Signale beschleunigt, da diese von Schnürring zu Schnürring springen. Am Ende des Axons verzweigt sich die Nervenzelle und endet in den „Endknöpfchen“, die wiederum eine Verbindung zu anderen Nervenzellen, zu Muskel- oder zu Drüsenzellen herstellen und die Signale dorthin weiterleiten. Jetzt kennst du den Aufbau der Nervenzelle. Kommen wir nun noch zu der Signalweiterleitung. Dazu sehen wir uns das Endknöpfchen einer Nervenzelle und den Dendrit einer anderen Nevenzelle an. Diese Kontaktstelle wird „Synapse“ genannt. Im Endknöpfchen befinden sich Bläschen mit chemischen Botenstoffen, den „Neurotransmittern“. Gegenüber liegt die Nachbarzelle mit Rezeptoren auf der Oberfläche der Dendriten. Zwischen beiden Zellen befindet sich der „synaptische Spalt“. Kommen nun die elektrischen Impulse im Endknöpfchen an, werden Neurotransmitter in den synaptischen Spalt freigesetzt. Die Neurotransmitter binden nach dem Schlüssel-Schloss-Prinzip an die passenden Rezeptoren der Dendriten, wodurch in der Empfängerzelle wiederum ein elektrischer Impuls ausgelöst und an den Zellkörper weitergeleitet wird. Am Axonhügel werden alle von den Dendriten aufgenommenen Erregungen gesammelt und nur wenn ein bestimmter Schwellenwert überschritten wird, wird das Signal, als so genanntes „Aktionspotential“ weitergeleitet. Dieses Signal hüpft dann das Axon an den Schnürringen entlang, bis es wieder an den Endknöpfchen zur Neurotransmitterausschüttung kommt. So kann eine Vielzahl an Körperreaktionen ausgelöst werden, wie zum Beispiel die Kontraktion einer Muskelzelle. Fassen wir noch einmal zusammen. Du weißt jetzt, warum Nervenzellen eine so besondere Form haben. An den Dendriten nehmen sie Signale von anderen Nervenzellen auf, welche durch das Soma weitergegeben werden und sich am Axonhügel sammeln. Dort wird erst ab dem Erreichen eines Schwellenwertes die Erregung über das Axon weitergeleitet. Über Synapsen erfolgt letztendlich die Weiterleitung des Signals an benachbarte Zellen. Das war's über die Nervenzelle. Ich hoffe, ich ging dir damit nicht zu sehr auf die Nerven.

1 Kommentar

1 Kommentar
  1. Das war ein sehr gutes video,
    ich hab alles verstanden und das hat mir sehr geholfen. es war weder zu schnell noch zu langsam und sehr verständlich
    Danke :)

    Von PIPIPUPUCHECK, vor etwa einem Monat

Nervenzelle – Bau und Funktion Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nervenzelle – Bau und Funktion kannst du es wiederholen und üben.
  • Benenne die Bestandteile einer Nervenzelle.

    Tipps

    Das Axon wird durch Hüllzellen isoliert.

    Die Dendriten sind die langen Ausläufer des Zellkörpers.

    Der Zellkern liegt im Soma.

    Lösung

    Grob lässt sich die Nervenzelle in zwei Teile gliedern, den Zellkörper und das Axon.
    Der Zellkörper, auch Soma genannt, beherbergt den Zellkern und alle anderen Zellorganellen wie eine gewöhnliche Zelle.

    Ungewöhnlich sind die verzweigten Fortsätze am Zellkörper, die Dendriten. Über diese Dendriten kann die Nervenzelle mit anderen Nervenzellen in Kontakt treten. Sie sind dabei für die Aufnahme von Signalen zuständig und leiten diese zum Zellkörper weiter.

    Der lange Fortsatz, der an den Zellkörper anschließt, ist das Axon, das am Axonhügel, also am Übergang von Zellkörper zu Axon, entspringt und dessen Funktion die Weiterleitung der Signale ist.

    Axone von Wirbeltieren sind meist mit Hüllzellen umschlossen, die für eine elektrische Isolierung sorgen.

    Am Ende des Axons verzweigt sich die Nervenzelle und endet in den Endknöpfchen, die wiederum eine Verbindung zu anderen Nervenzellen, zu Muskel- oder zu Drüsenzellen herstellen und die Signale dorthin übertragen.

  • Definiere, was Nervenzellen sind.

    Tipps

    Zwei der Antwortmöglichkeiten sind korrekt.

    Spezialisierte Zellen erfüllen im Körper eine bestimmte Aufgabe.

    Lösung

    Nervenzellen oder auch Neurone sind spezialisierte Zellen, die für die Weiterleitung von elektrischen Impulsen zuständig sind, was mit Spitzengeschwindigkeiten von bis zu 100 Meter pro Sekunde passieren kann.
    Nervenzellen können mit anderen Nervenzellen oder auch mit Muskel- und Drüsenzellen kommunizieren.

  • Erläutere die Funktion der Bestandteile einer Nervenzelle.

    Tipps

    Das Soma ist der Körper der Zelle ohne die Zellfortsätze. Es enthält viele wichtige Bestandteile wie das gut verpackte Erbgut.

    Das Axon entspringt am Axonhügel und führt wie ein Kabel vom Zellkörper weg.

    Lösung

    An den Dendriten nehmen Nervenzellen die Signale von anderen Nervenzellen auf, die durch das Soma, das die Zellorganellen und den Zellkern trägt, weitergegeben werden und sich am Axonhügel sammeln.

    Am Axonhügel wird erst ab dem Erreichen eines Schwellenwerts die Erregung über das Axon weitergeleitet. Für eine optimale elektrische Isolierung ist das Axon von Hüllzellen umgegeben.

    Über synaptische Endknöpfchen erfolgt letztendlich die Übertragung des Signals an benachbarte Zellen.

  • Erkläre, wie die Informationsübertragung zwischen zwei Nervenzellen mittels einer chemischen Synapse funktioniert.

    Tipps

    Das Axon entspringt am Axonhügel.

    Neurotransmitter sind Botenstoffe des Nervensystems.

    Eine Synapse besteht aus der Membran eines Endknöpfchens, einem synaptischen Spalt und der Membran der Empfängerzelle, die entsprechende Rezeptoren aufweist.

    Lösung

    Elektrische Signale erreichen den Axonhügel. Wird dabei ein gewisser Schwellenwert erreicht, entsteht ein Aktionspotenzial.
    Das Aktionspotenzial wird über das Axon weitergeleitet.
    Beim Eintreffen eines Aktionspotenzials in ein Endknöpfchen werden Botenstoffe (Neurotransmitter) in den synaptischen Spalt freigegeben.
    Die Neurotransmitter binden nach dem Schlüssel-Schloss-Prinzip an Rezeptoren der Dendriten der Empfängerzelle und die Signale erreichen die nächste Nervenzelle.
    Elektrische Impulse aller Dendriten durchlaufen den Zellkörper und werden am Axonhügel gesammelt, wo erneut ein Aktionspotenzial entstehen kann.

  • Fasse die wichtigsten Informationen über Nervenzellen zusammen.

    Tipps

    Wird der Schwellenwert am Axonhügel erreicht, kommt es zu einer Signalweiterleitung.

    Synapsen sind neuronale Kontaktstellen zwischen Zellen.

    Der Zellkörper von Nervenzellen wird Soma genannt.

    Lösung

    Nervenzellen haben eine besondere Form. An den Dendriten nehmen sie Signale von anderen Nervenzellen auf, die durch das Soma weitergegeben werden und sich am Axonhügel sammeln.

    Dort wird erst ab dem Erreichen eines Schwellenwerts die Erregung über das Axon weitergeleitet.

    Über Synapsen erfolgt letztendlich die Übertragung des Signals an benachbarte Zellen.

  • Vergleiche die Funktion und den Aufbau von Zellkörper und Axon einer Nervenzelle.

    Tipps

    Den Zentralelementen können jeweils drei Stichpunkte zugeordnet werden.

    Das Axon ist der lange Fortsatz einer Nervenzelle, der wie ein Kabel vom Zellkörper wegführt.

    Der Axonhügel ist Teil des Zellkörpers.

    Am Axonhügel werden die elektrischen Signale gesammelt und beim Erreichen eines Schwellenwerts entsteht ein Aktionspotenzial.

    Lösung

    Grob kann man die Nervenzelle in zwei Teile gliedern, den Zellkörper und das Axon.

    Der Zellkörper enthält den Zellkern. Am Axonhügel des Zellkörpers werden die elektrischen Impulse, die von den Dendriten kommen, verarbeitet und beim Erreichen eines Schwellenwerts entsteht ein Aktionspotenzial.

    Das Axon ist bei Wirbeltieren meist von Hüllzellen umgeben und verzweigt sich in die synaptischen Endknöpfchen. Seine Funktion ist die Erregungsweiterleitung.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.009

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.231

Lernvideos

42.201

Übungen

37.298

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden