Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Thomsons Atommodell

Erfahre, wie Thomson das Atom als Masse mit gleichmäßig verteilten Elektronen beschrieb. Lerne mehr über die Geschichte von Joseph Thomson, seine Experimente mit Elektronen und warum sein Modell an Grenzen stieß. Interessiert? All das und noch mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 30 Bewertungen
Die Autor*innen
Avatar
André Otto
Thomsons Atommodell
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Thomsons Atommodell Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Thomsons Atommodell kannst du es wiederholen und üben.
  • Gib die Daltonschen Postulate wieder.

    Tipps

    Eine der fundamentalsten physikalischen Gesetzmäßigkeiten ist der Satz der Masserhaltung.

    Lösung

    Die Atomhypothese nach Dalton ist ein relativ simpel. Trotzdem lassen sich mit ihr viele Sachverhalte erklären. Er hatte nämlich schon richtig erkannt, dass Elemente aus kleinsten Bausteinen bestehen, den Atomen.

    Weiterhin erkannte er, dass bei einer chemischen Reaktion eine Trennung und neue Vereinigung von Atomen erfolgt. Atome lassen sich jedoch nicht zerstören - jedenfalls nicht mit chemischen Reaktionen. Allerdings konnten Lise Meitner, Enrico Fermi und Otto Hahn Ende der dreißiger Jahre des vergangenen Jahrhunderts zeigen, dass Atomkerne freiwillig oder nach Beschuss durch Neutronen zerfallen.

    Ein weiteres Postulat Daltons war, dass Atome der gleichen Masse dasselbe Element bilden. Dies ist jedoch aus heutiger Sicht falsch. Wie wir heute wissen, definiert nicht die Masse, um welches Atom/ Element es sich handelt, sondern die Anzahl der Protonen, die sich im Kern befinden.

  • Beschreibe die Thomsonsche Atomhypothese.

    Tipps

    Ein Atom hat immer die gleiche Anzahl von Protonen und Elektronen.

    ,,Sub" ist das lateinische Wort für ,,unter".

    Lösung

    Die Entdeckung des Elektrons im Jahre 1897 durch Emil Wiechert und Joseph John Thomson ermöglichte erst eine weiterführende Atomhypothese - der von Dalton. Thomson postulierte positive und negative subatomare Teilchen, welche sich gleichmäßig und energetisch günstig verteilen. Aus dieser gleichmäßigen Verteilung resultiert auch der Name Rosinenkuchenmodell. Die Anzahl der Elektronen und Protonen muss dabei gleich sein, damit ein Atom nach außen neutral geladen ist.

  • Bestimme, welche grafische Darstellung die verschiedenen Atommodelle repräsentiert.

    Tipps

    Erst durch das Bohrsche Atommodell konnten die Linienspektren von Alkalimetallen erklärt werden.

    Sommerfeld postulierte eine Erweiterung zum Bohrschen Atommodell (elliptische Bahnen).

    Lösung

    Im 19. und 20. Jahrhundert war das Atom eines der meistuntersuchten Phänomene. Viele Physiker und Chemiker wollten nämlich herausfinden, „was die Welt im Innersten zusammenhält“ (Faust I). Im Laufe der Jahre wurden die Atomvorstellungen immer weiter „verbessert“, da neue Technologien und Erfindungen gezieltere Untersuchungen ermöglichten.

    Wo Dalton noch von kugelförmigen Atomen sprach, kam durch Thomson - mit der Entdeckung des Elementarteilchens des Elektrons (1897) - die Erweiterung zum Rosinenkuchenmodell.

    Einige Jahre später konnte Rutherford mithilfe seines Streuversuches (1907) zeigen, dass die Masse der positiv geladenen Teilchen auf ein Zentrum konzentriert ist und sich die Elektronen um diesen Kern bewegen.

    Anfang des 20. Jahrhunderts gab es allerdings neue physikalische Probleme, die durch das Rutherfordsche Atommodell nicht mehr erklärt werden konnten (z.B. Emissionsspektrum von Alkalimetallen in der Flamme). Deswegen postulierte Bohr ein Atommodell, in dem sich die Elektronen strahlungsfrei auf definierten, äquidistanten Bahnen bewegen.

    Die heutige Vorstellung von Atomen ist leider nur noch schwer grafisch darstellbar. Allerdings können viele Werte, wie der Atomdurchmesser oder die Elektronenmasse, sehr präzise beschrieben werden (s. Grafik).

  • Beschreibe den Rutherfordschen Streuversuch.

    Tipps

    Gleiche Ladungen stoßen sich ab.

    Die Anzahl der die Goldfolie durchdringenden Teilchen war um vieles höher als die der zurückgeworfenen.

    Lösung

    Das Bild zeigt, wie sich die positiven Teilchen ($\alpha$-Teilchen), dargestellt durch die Pfeile, verhalten, wenn sie auf ein Atom treffen. Viele Alpha-Teilchen passieren ungehindert das Atom. Trifft ein Alpha-Teilchen jedoch auf einen Atomkern, wird es aufgrund gleichartiger Ladung abgestoßen und wieder zurückgeworfen. Trifft das Alpha-Teilchen nicht direkt auf den Atomkern, sondern streift diesen nur, wird es ebenfalls aufgrund gleichartiger Ladung abgelenkt.

    Eine weitere Erkenntnis, die man hieraus ziehen kann, ist, dass der Kern im Vergleich zur Gesamtatomgröße winzig klein ist. Da nur der Kern elektropositiv zu sein scheint, aber jedes Element nach außen hin neutral geladen ist, muss der Rest des Atoms aus negativ geladenen subatomaren Teilchen - den Elektronen - aufgebaut sein. Niels Bohr verfeinerte dieses Modell, indem er postulierte, dass sich die Elektronen auf definierten Bahnen bewegen, wobei die maximale Belegung einer Bahn auf $Z=2~\cdot~n^2$ mit n = Nummer der Schale beschränkt ist.

  • Zeige den zeitlichen Verlauf der Erkenntnisse über Atome auf.

    Tipps

    Erkenntnisgewinne, die über Jahrzehnte der Forschung erfolgen, ermöglichen eine immer genauer werdende Modellvorstellung.

    Heutzutage erklärt man die Bindungsverhältnisse von Molekülen über Orbitale.

    Lösung

    Über Jahrzehnte hinweg wurde die Vorstellung des Aufbaus der Materie immer weiter verfeinert. Beginnend bei der Vorstellung von kleinen, massiven, unteilbaren Kügelchen, über die Erkenntnis, dass ein Atom aus positiven und negativen Teilchen besteht und wie diese angeordnet sind. Bis man letztendlich bei dem Modell von Niels Bohr und Arnold Sommerfeld landete, bei dem ein positiv geladener Atomkern von sich auf Bahnen bewegenden Elektronen umkreist wird.

    Aber auch jenes Modell ist mittlerweile obsolet, denn die Quantenmechanik lehrt uns, dass Elektronen sich nicht wie Masseteilchen verhalten. Eine genauere Beschreibung von Elektronen würde an dieser Stelle jetzt nun aber zu weit gehen. An dieser Stelle soll nur gesagt sein, dass einem Elektron hierbei nur noch eine Aufenthaltswahrscheinlichkeit um den Kern herum zugedacht wird.

  • Erkenne die Atommodelle, die eine korrekte Elektronenverteilung aufweisen.

    Tipps

    Schale Nummer 1 kann nach der Formel nur 2 Elektronen aufnehmen.

    Die zweite Schale kann bis zu 8 Elektronen aufnehmen.

    Bevor eine Schale nicht voll besetzt ist, wird noch keine neue Schale besetzt.

    Lösung

    Sauerstoff befindet sich im Periodensystem in der 6. Hauptgruppe und der 2. Periode und besitzt die Ordnungszahl 8. Daraus lassen sich drei wichtige Fakten zum Schalenmodell ableiten:

    • Da Sauerstoff in der 6. HG steht, besitzt es 6 Außenelektronen (p-Elektronen).
    • Weil Sauerstoff in der 2. Periode steht, ist es aus 2 Schalen aufgebaut.
    • Da Sauerstoff die Ordnungszahl 8 besitzt, müssen sich 8 Protonen im Kern befinden und 8 Elektronen müssen auf die Bahnen aufgeteilt werden.
    Die Gleichung $Z~=~2~\cdot~n^2$ gibt wieder, wie die einzelnen Schalen mit Elektronen besetzt werden. $Z$ ist hierbei die maximale Anzahl an Elektronen auf einer Schale und $n$ die Nummer der Schale. Wichtig ist hierbei jedoch, dass diese Anzahl sich auf die komplette Schale (Niveau) bezieht. Diese Energieniveaus besitzen jedoch noch weitere Unterniveaus.

    Die Gleichung gibt die maximale Anzahl von Elektronen auf einer Schale an. Wenn es sich um die äußere Schale handelt, kann diese Anzahl allerdings auch unterschritten werden. Nur die Edelgase weisen im atomaren Zustand eine vollständig besetzte Außenschale auf.