Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Rechnen mit Logarithmen

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 3 Bewertungen
Die Autor*innen
Avatar
André Otto
Rechnen mit Logarithmen
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Rechnen mit Logarithmen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Rechnen mit Logarithmen kannst du es wiederholen und üben.
  • Bestimme die Logarithmengesetze.

    Tipps

    Logarithmen unterscheiden sich in ihrer Basis.

    $log10^{-3} = -3$

    Lösung

    Einfach ausgedrückt kannst du dir folgendes merken:

    1. Logarithmen werden multipliziert, indem sie addiert werden.
    2. Logarithmen werden dividiert, indem sie subtrahiert werden.
    3. Der Exponent (Potenz) eines Logarithmus wird mit ihm multipliziert.
    Beim chemischen Rechnen stehen für a und b bzw. n reale Zahlenwerte. Es wird meistens mit dem Logarithmus zur Basis 10 gerechnet. Das ist der dekadische Logarithmus. Die Darstellung des Logarithmus ändert sich von log zu lg. Eine logarithmische Größe hat immer die physikalische Einheit 1. Eine Anwendung des Rechnens mit Logarithmen ist die pH-Wert-Berechnung.

  • Wende die Logarithmengesetze für Produkte, Quotienten und Potenzen an.

    Tipps

    Beachte die Vorzeichenregeln beim negativen, dekadischen Logarithmus.

    Logarithmen können jeweils eine verschiedene Basis haben.

    Der dekadische Logarithmus (lg) hat die Basis 10.

    Lösung

    Das Rechnen mit Logarithmen erleichtert die pH-Wert-Berechnung. Man benutzt für diese Berechnung den negativen, dekadischen Logarithmus, den Logarithmus zur Basis 10. Der pH-Wert ist definiert über pH=$-log_{10}[H_3O^+]$. Vereinfacht schreibt man pH=$-lg[H_30^+]$. Wenn du eine pH-Wert Berechnung machen willst, musst du als erstes klären, ob es sich um eine saure oder eine basische Lösung handelt. Du kannst das leicht aus dem Namen ableiten, zum Beispiel Salzsäure. Dann brauchst du die Konzentration der Lösung. Diese ist meist in $\frac{mol}{l}$ angegeben und wird häufig in eckige Klammern gesetzt. Diese Konzentration setzt du in die Gleichung ein. Jetzt wendest du das zutreffende Logarithmengesetz an. Dabei beachte, dass die Konzentrationen als Zehnerpotenzen eingesetzt werden, z.B. 0,01 $\frac{mol}{l}$ zu $1\cdot10^{-2} \frac{mol}{l}$. Das erleichtert das Rechnen. Der Exponent wird vor den lg gezogen, also pH= $-(-2 log_{10}10)$. Da der lg von 10 gleich eins ist, ergibt sich ein pH-Wert von 2. Beachte auch: Eine logarithmische Größe hat immer die physikalische Einheit 1.

    1. $lg(a\cdot b) =lga+lgb$
    2. $lg(\frac{a}{b}) =lga - lgb$
    3. $lga^n = nlga$
  • Nenne Bereiche in Chemie und Alltag, in denen logarithmisches Rechnen verwendet wird.

    Tipps

    Überlege, wo du schon logarithmische Zusammenhänge kennengelernt hast.

    Lösung

    Logarithmisches Rechnen braucht man überall dort, wo die physikalischen oder chemischen Zahlenwerte der Größen sehr breit schwanken und sich weder linear noch quadratisch verhalten. In der Chemie ist das vor allem in den kleinen Konzentrationsbereichen in wässrigen Lösungen oder auch in den geringen Konzentrationsänderungen in galvanischen Elementen der Fall. Auch bei der Lärmpegelmessung spielt das logarithmische Rechnen eine Rolle, weil der Schall sich nicht linear ausbreitet, sondern weil die Ausbreitung einer logarithmischen Funktion folgt. Prinzipiell können logarithmische Rechnungen mit Hilfe des dekadischen Logarithmus, der vor allem in der Chemie Verwendung findet, aber auch mit dem natürlichen oder dem dualen Logarithmus ausgeführt werden.

  • Erkläre die Bedeutung des Ionenproduktes des Wassers für die pH-Wert-Berechnung.

    Tipps

    Überlege, welche Ionen für den sauren Charakter einer wässrigen Lösung verantwortlich sind.

    Ein Universalindikator zeigt entweder Wasserstoffionen oder Hydroxidionen an!

    Was verursacht einen sauren Geschmack?

    Lösung

    Das Ionenprodukt des Wassers wird $K_W$ genannt. Es ist eine Konstante mit dem Zahlenwert $1\cdot 10^ {-14}$ und einer physikalischen Einheit von $\frac{mol^2}{l^2}$. Es setzt sich am Neutralpunkt bei pH=7 aus gleichen Konzentrationsanteilen von Wasserstoffionen (kommen in Wasser in Form von Oxoniumionen vor) und Hydroxidionen zusammen. Daraus folgt, dass beide Ionenkonzentrationen gleich sein müssen, nämlich $1\cdot 10^-7 \frac{mol}{l}.$ So erklärt sich auch die Einheit des $K_W$.

  • Nenne die Art des Logarithmus und dessen Basis, der für pH-Wert-Berechnungen genutzt wird.

    Tipps

    Ist der Logarithmus der Freund der Potenzrechnung?

    Denke daran, dass Logarithmen eine unterschiedliche Basis haben können.

    Der Begriff Dekade steht für die Zahl 10.

    Lösung

    Der dekadische Logarithmus ist der Logarithmus zur Basis 10. Mit ihm lassen sich besonders gut Zehnerpotenzen berechnen. Der dekadische Logarithmus lg von 10 ist 1. das erleichtert das Rechnen mit Zehnerpotenzen. Die Konzentrationsangaben für die pH-Wert Berechnungen von wässrigen, sauren oder basischen Lösungen werden in Zehnerpotenzen angegeben.

  • Berechne den pH-Wert einer sauren, wässrigen Lösung mit einer Konzentration von 0,01 mol/l.

    Tipps

    Wiederhole die Logarithmengesetze, die für die Berechnung des pH-Wertes verwendet werden.

    Überlege, in welchem pH-Bereich ein pH-Wert nur liegen kann, wenn eine saure Lösung vorliegt.

    Lösung

    Für die Berechnung der pH-Werte von Säuren und Basen sind die logarithmischen Gesetze von großer Nützlichkeit. Verwendet wird üblicherweise für die Berechnungen der dekadische Logarithmus, d.h. der Logarithmus zur Basis 10. Das ist besonders schlau, weil aufgrund dieser Basis eine einfache Berechnung von Konzentrationen, die dem pH-Wert zugrunde liegen, möglich wird. Kläre immer zuerst, ob eine Säure oder eine Base vorliegt. Liegt eine Konzentration für eine Säure vor, kannst du dies sofort als Konzentration der $[H_3O^+]$ einsetzen. Meist sind diese Konzentrationen mit Dezimalzahlen in $\frac{mol}{l} angegeben. Wandle diese Dezimalzahl in eine Zehnerpotenz um und setze dies in die Formel für den pH-Wert ein. Jetzt kommen die logarithmischen Gesetze zum Tragen. Der Exponent n der Zehnerpotenz erscheint vor dem log10. Der Dekadische Logarithmus der verbliebenen 10 ist 1. Jetzt musst du nur noch den Klammerausdruck auflösen und du erzielst den pH-Wert. Dein Ergebnis kannst du darüber prüfen, ob es größer als 1 und kleiner als 7 ist.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.938

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.432

Lernvideos

35.482

Übungen

33.031

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden