Erregungsleitung innerhalb der Nervenzelle
Entdecke die Funktionsweise der Erregungsleitung in Nervenzellen, von saltatorischer bis kontinuierlicher Leitung. Verstehe die Bedeutung von Myelinscheiden und die Auswirkungen bei Erkrankungen wie Multipler Sklerose. Hast du Fragen? Finde Antworten und mehr in unserem ausführlichen Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Erregungsleitung innerhalb der Nervenzelle
Erregungsleitung innerhalb der Nervenzelle
Der folgende Text befasst sich mit der Erregungsleitung innerhalb der Nervenzelle, also dem Weg eines Aktionspotenzials vom Axonhügel zu den synaptischen Endknöpfchen. Die Erregungsleitung ist ein bioelektrischer Prozess, der die Grundlage für die Funktion der Nervenzelle und des zentralen Nervensystems bildet. Sie ermöglicht die neuronale Kommunikation durch die Übertragung elektrischer Signale. Eine Nervenzelle besteht aus dem Zellkörper, Dendriten und dem Axon. Das Axon leitet elektrische Impulse weiter und seine Struktur ist entscheidend für die Art der Erregungsleitung. In diesem Text werden die saltatorische und die kontinuierliche Erregungsleitung definiert und unterschieden.
Saltatorische Erregungsleitung
Ein Axon mit Myelinscheide, umwickelt von schwannschen Zellen im peripheren oder Oligodendrozyten im zentralen Nervensystem, ermöglicht eine effiziente und schnelle Übertragung von Aktionspotenzialen. Diese springen von einem ranvierschen Schnürring zum nächsten, was die Leitungsgeschwindigkeit erhöht. Beim Eintreffen eines Aktionspotenzials an einem Schnürring strömen Natriumionen in das Axon ein, während Kaliumionen ausströmen, wodurch das nächste Aktionspotenzial ausgelöst wird. Anschließend können sich diese Ionenkanäle für eine kurze Zeitspanne nicht erneut öffnen. Diesen Zeitraum bezeichnen wir als Refraktärzeit. So wird verhindert, dass das Aktionspotenzial rückwärts geleitet wird.
Bei Erkrankungen des Nervensystems wie Multipler Sklerose führt der Abbau der Myelinscheiden zu einer verlangsamten und gestörten Erregungsübertragung, was Symptome wie Lähmungen und Koordinationsstörungen zur Folge hat.
Kontinuierliche Erregungsleitung
Axone ohne Myelinscheide, auch marklose Nervenfasern genannt, finden sich bei inneren Organen und Nozizeptoren (auch Schmerzrezeptoren genannt). Hier wird das Aktionspotenzial entlang des gesamten Axons fortgeleitet, ohne zu „springen“. Diese Methode ist energetisch aufwendiger als die saltatorische Erregungsleitung. Zudem macht das die Leitung langsamer als in myelinisierten Nervenfasern, ermöglicht aber eine genaue und graduelle Signalübertragung. Dies ist besonders wichtig in Bereichen unseres Körpers, wo präzise und fein abgestimmte Bewegungen erforderlich sind. Eine Verdickung des Axons kann die Leitungsgeschwindigkeit erhöhen, ist aber im Vergleich zur Myelinisierung weniger effektiv.
Vorsicht: Die Begriffe Reizweiterleitung und Erregungsleitung werden oft synonym verwendet, jedoch bezieht sich Erregungsleitung spezifisch auf die Übertragung der elektrischen Aktivität innerhalb einer Nervenzelle. Der Begriff Erregungskette beschreibt hingegen die Weiterleitung einer Erregung zwischen mehreren Neuronen über Synapsen.
Zusammenfassung
Die Erregungsleitung in Nervenzellen ist ein essenzieller Vorgang für die neuronale Kommunikation. Die saltatorische Erregungsleitung ist effizient und schnell, während die kontinuierliche Erregungsleitung langsamer und energetisch aufwendiger ist. Beide Formen der Erregungsleitung tragen auf unterschiedliche Weise zur komplexen Funktion des Nervensystems bei. Die Refraktärzeit ist ein wesentlicher Mechanismus, der sowohl bei der saltatorischen als auch bei der kontinuierlichen Erregungsleitung eine Rolle spielt, um die Richtung der Erregungsleitung zu bestimmen und eine effiziente Signalübertragung zu gewährleisten.
Merkmal | Saltatorische Erregungsleitung | Kontinuierliche Erregungsleitung |
---|---|---|
Axon | myelinisiert | nicht myelinisiert |
Geschwindigkeit | sehr schnell | langsam |
Energiebedarf | gering | hoch |
Vorkommen | im zentralen und peripheren Nervensystem | im peripheren Nervensystem |
Häufig gestellte Fragen zum Thema Erregungsleitung innerhalb der Nervenzelle
Erregungsleitung innerhalb der Nervenzelle Übung
-
Definiere Schlüsselbegriffe der Erregungsweiterleitung.
-
Beschreibe den Ablauf der kontinuierlichen Erregungsleitung.
-
Vergleiche die kontinuierliche mit der saltatorischen Erregungsleitung.
-
Fasse strukturelle Gemeinsamkeiten und Unterschiede der Erregungsleitung in verschiedenen Axonen mit Hilfe eines Modells aus Dominosteinen zusammen.
-
Erkläre den Geschwindigkeitsunterschied zwischen kontinuierlicher und saltatorischer Erregungsleitung.
-
Untersuche die Folgen der Multiplen Sklerose auf die saltatorische Erregungsleitung.
9.243
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.677
Lernvideos
37.121
Übungen
32.366
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Biologie
- Was ist DNA
- Organe Mensch
- Meiose
- Pflanzenzelle
- Blüte Aufbau
- Feldmaus
- Chloroplasten
- Chlorophyll
- Rna
- Chromosomen
- Rudimentäre Organe
- Wirbeltiere Merkmale
- Mitose
- Seehund
- Modifikation Biologie
- Bäume Bestimmen
- Metamorphose
- Synapse
- Synapse Aufbau und Funktion
- Ökosystem
- Amöbe
- Blobfisch
- Phänotyp
- Endoplasmatisches Retikulum
- Karyogramm
- RGT Regel
- Biotop
- Fotosynthese
- Allel
- Ribosomen
- Golgi-Apparat
- Mitochondrien
- Genotyp
- Zellorganellen
- Phospholipide
- Gliazellen
- Nahrungskette Und Nahrungsnetz
- Phagozytose
- Vesikel
- Biozönose
- Sympatrische Artbildung
- Allopatrische Artbildung
- Interphase
- Schlüssel-Schloss-Prinzip
- Das Rind Steckbrief
- Endozytose
- Destruenten
- Röhrenknochen
- Dendriten
- Sarkomer